Dissipationless flow in a Bose-Fermi mixture

Zoe Z. Yan, Yiqi Ni, Alexander Chuang, Pavel E. Dolgirev, Kushal Seetharam, Eugene Demler, Carsten Robens, Martin Zwierlein

arXiv:2304.07663

Interacting mixtures of bosons and fermions are ubiquitous in nature. They form the backbone of the standard model of physics, provide a framework for understanding quantum materials such as unconventional superconductors and two-dimensional electronic systems, and are of technological importance in 3He/4He dilution refrigerators. Bose-Fermi mixtures are predicted to exhibit an intricate phase diagram featuring coexisting liquids, supersolids, composite fermions, coupled superfluids, and quantum phase transitions in between. However, their coupled thermodynamics and collective behavior challenge our understanding, in particular for strong boson-fermion interactions. Clean realizations of fully controllable systems are scarce. Ultracold atomic gases offer an ideal platform to experimentally investigate Bose-Fermi mixtures, as the species concentration and interaction strengths can be freely tuned. Here, we study the collective oscillations of a spin-polarized Fermi gas immersed in a Bose-Einstein condensate (BEC) as a function of the boson-fermion interaction strength and temperature. Remarkably, for strong interspecies interactions the fermionic collective excitations evolve to perfectly mimic the bosonic superfluid collective modes, and fermion flow becomes dissipationless. With increasing number of thermal excitations in the Bose gas, the fermions’ dynamics exhibit a crossover from the collisionless to the hydrodynamic regime, reminiscent of the emergence of hydrodynamics in two-dimensional electron fluids. Our findings open the door towards understanding non-equilibrium dynamics of strongly interacting Bose-Fermi mixtures.