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Abstract

This thesis describes experiments on ultracold fermionic atoms, and can be divided
into two areas. The first concerns spin-orbit coupling; the second concerns quantum
gas microscopy.

With the use of Raman transitions, 1D spin-orbit coupling of ultracold °Li was
realized. Using a novel type of spectroscopy, spin-injection spectroscopy, where the
spin, energy, and momentum are all resolved, we directly observed the spinful dis-
persions of the spin-orbit bands. In addition, we demonstrated selective adiabatic
loading of the spin-orbit bands, which can be used to create a spinless Fermi gas
with effective p-wave interactions. Spin-injection spectroscopy was further applied
to a novel spinful lattice system created using Raman and radio-frequency coupling,
which allowed for state tomography of spinful bands.

The second part of this thesis describes quantum gas microscopy of ultracold
fermions. This enables one to simulate the Fermi-Hubbard model, a prototypical
strongly correlated model, with site-resolved detection and control capablities.

A new apparatus that can detect fermionic “°K in a square lattice with single-site
resolution was constructed. High-fidelity site-resolved imaging was achieved using
Raman imaging, which allowed for the direct observation of the band-insulating, the
metallic, and the Mott-insulating states of the Hubbard model. The interaction-
driven Mott insulator, where doubly occupied sites are highly suppressed, illustrates
the strongly correlated nature of the Hubbard model.

Harnessing the capability to measure the occupations of individual lattice sites
with the microscope, we explored spatial correlations of both spin and charge in the
Hubbard model as a function of doping. For the spin correlations, we observed weak-
ening of antiferromagnetic correlations away from half-filling. However, in the charge
correlations between local magnetic moments, non-monotonic behavior was observed.
This can be understood as arising from competition between Pauli-blocking, domi-
nant at low fillings, and doublon-holon bunching, which arises from superexchange
and is strongest at half-filling. The anti-bunching correlations at low filling can be
interpreted as the first direct real-space observation of the interaction-enhanced Pauli

hole.
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Chapter 1

Overview

Since the realization of quantum degeneracy of large ensembles of atoms, ultracold
atomic gases has proven to be a highly flexible platform for experimentally explor-
ing quantum many-body systems [14]. For example, the realization of Bose-Einstein
condensates with bosonic atoms [5, 29] enabled experimental studies of a new form
of quantum matter. The quantum statistics of bosons allowed a macroscopic number
of particles into a single quantum state, realizing macroscopic matter waves. Mea-
surements of the excitations and responses have revealed the interplay of interactions
and quantum statistics, leading to new insights for these systems [72]. For example,
questions such as whether a condensate has a phase [6], the relation between super-
fluidity and condensation [99, 115], and the nature of excitations [132, 139], can all
be experimentally addressed.

A few years after the first Bose-Einstein condensates were realized, large ensembles
of quantum degenerate gases of fermionic atoms were created [30, 127, 137, 66, 43, 48].
Compared to their bosonic counterparts, fermionic atoms obey different quantum
statistics. These statistics, Fermi statistics, forbid two identical fermions to be in the
same quantum state, a rule also known as the Pauli exclusion principle. This Pauli-
blocking effect has profound consequences in both few-body and many-body systems,
ranging from the electronic structure of atoms to the stability of neutron stars and
white dwarfs.

Due to the pervasiveness of fermionic systems in nature, quantum-degenerate
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samples of ultracold fermionic atoms opened up the possibility to simulate a large class
of models that describe many different physical systems, ranging from the surface of
neutron stars to the electrons in real-life materials. This idea of simulating a many-
body system through an analogous realization - in this case, a system of atoms - is
known as “quantum simulation.” This approach is particularly attractive in the case
of strongly interacting many-body fermionic systems, which are generically difficult
to solve due to the fermion sign problem, a consequence of Fermi exchange statistics
[136]. Experiments on ultracold Fermi gas can thus provide invaluable benchmarks of
different theoretical approaches, where uncontrolled approximations are often made
(80, 138].

The use of ultracold fermions as “quantum simulators” have proven highly suc-
cessful. For example, using a two-component ultracold Fermi gas with tunable s-wave
interactions, experiments were able to explore the BEC-BCS crossover, where super-
fluids of Bose-condensed tightly-bound pairs of fermions are smoothly converted to
superfluids of long-range BCS pairs [73, 63]. In the cross-over region where the super-
fluids are strongly-interacting, one can obtain some of the highest relative superfluid

transition temperatures [119, 152, 151].

An alternative path to obtain strong interactions is through confining atoms in
an optical lattice. By suppressing the motion of the particles, the kinetic energy
is reduced and interactions play an increasingly important role. A two-component
fermion gas trapped in an optical lattice simulates the Fermi-Hubbard model, a pro-
totypical model in condensed matter physics that contains strong correlations [36].
The Hubbard model has generated intense interest since it is believed to describe
the physics of high-T, cuprates [28, 83]. Nevertheless, despite the simplicity of the
model, due to the fermion sign problem, it has remained unsolved except in limiting
cases. Simulating the Hubbard model with ultracold fermions in an optical lattice

could perhaps one day shed light on this long-standing problem.

The work in this thesis is concerned with the experimental study of ultracold
fermions. In particular, this thesis covers two topics. The first concerns spin-orbit

coupling, where the motion of a particle is coupled to an internal degree of freedom.
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In condensed matter systems, spin-orbit coupling is often an essential ingredient nec-
essary to produce non-trivial states of matter. For example, recently discovered topo-
logical insulators, which defy the conventional classification of phases via symmetry
breaking, relies inherently on the presence of spin-orbit coupling [53]. Another ex-
citing possibility arises when spin-orbit coupling is combined with superconductivity,
where many-body states known as Majorana zero modes can be created [114]. In
recent years, these have generated intense experimental interest, as these topologi-
cally protected Majorana modes have non-Abelian statistics, and thus can be used as
a platform for fault-tolerant “topological” quantum computation [95, 3]. A specific
route towards realizing these exotic excitations combines spin-orbit coupling in one
dimension, a Zeeman field, and s-wave superconductivity [124, 100, 2]. Motivated in
part by the prospects of Majoranas, we set out to implement spin-orbit coupling for
ultracold fermionic °Li, with which s-wave superfluids have previously been realized.
We will describe how we realize spin-orbit coupling in 1D by using a two-photon
Raman process. We also present a method that allows direct spin-resolved detection
of the band structure in spin-orbit coupled systems. In addition, we demonstrate
how this technique can be used to resolve bands in a novel spin-dependent lattice

generated by combining Raman coupling and a radio-frequency drive.

The second area in this thesis concerns quantum gas microscopy of ultracold
fermions trapped in an optical lattice, which allows quantum simulation of the Fermi-
Hubbard model. While ultracold fermions have been previously trapped in optical
lattices [77, 25], and signatures of the strongly correlated Mott-insulating state [67,
125] along with the appearance of short-range magnetic order have been detected
[44, 52], these measurements relied on globally-averaged quantities in inhomogeneous

samples.

We will describe a novel experimental apparatus - a fermionic quantum gas mi-
croscope - that offers an unprecedented level of local detection and control. This
approach of quantum gas microscopy of fermions can open up new types of experi-

ments on the spatial correlations and dynamics of fermions in the Hubbard regime.

For example, in previously realized quantum gas microscopes of bosonic atoms,
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one has the ability to probe and manipulate atoms in a site-resolved fashion. This has
led to new studies on correlations in the Bose-Hubbard model, novel experiments on
quantum walks, and even experiments where the entanglement entropy in many-body
systems can be characterized through interferometry of many-body states.

Although previous quantum gas microscopes for bosonic 8"Rb atoms were realized
in 2010, the fermionic versions proved more difficult. It was not until 2015 when the
first fermionic quantum gas microscopes, one of which is described in this thesis,
appeared. We will describe some of the challenges of quantum gas microscopy of
fermionic “°K, and the methods we used to overcome them.

We will also discuss site-resolved measurements of quantum degenerate samples
though the microscope. In particular, we have observed with site-resolved resolu-
tion three representative states of the Hubbard model: the metallic state, the band-
insulating state and the Mott-insulating state. The Mott insulating state is the
hallmark of strongly-correlated fermions. For the Mott insulator, although the band
is half-filled and one expects a metallic state from band theory, the presence of strong
repulsion between particles lead to an interaction-driven insulator.

In addition to measuring site-resolved occupations of atoms residing on a lattice,
we have performed spatial correlations measurements, enabled directly by the site-
resolving capabilities of the microscope. By extending the detection technique to be
spin-sensitive, we have measured both spin and charge correlations between nearest
neighbors as a function of filling (doping) in the strongly correlated regime. In the
spin sector, we observed weakening anti-ferromagnetic correlations as the system is
doped; in the charge sector, we observe a competition between Pauli blocking and

doublon-holon correlations due to super-exchange.

1.1 Thesis Outline

This thesis is organized as follows.
In Chapter 2, we provide some theory relevant to ultracold fermions, both inter-

acting and non-interacting. Since this is a broad topic, where many references are
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available, we do not attempt to cover every aspect of this topic. Instead, we discuss
aspects that are relevant to subsequent chapters, with a particular emphasis to spa-
tial correlations. Some properties relevant to 2D Fermi gases will be also be given.
When discussing interactions, we will follow an approach that highlights differences
that arise in two dimensions compared to three dimensions.

In Chapter 3, we describe realizing spin-orbit coupling in ultracold fermionic L.
We first provide motivation for spin-orbit coupling using two simple 1D models. We
next describe in detail how spin-orbit coupling is implemented and detected in a
specific scheme using Raman lasers. Some experimental challenges of this scheme is
discussed.

In Chapter 4, we describe the nuts and bolts of our quantum gas microscope
apparatus for fermionic *°K. This chapter is rather technical.

In Chapter 5, we discuss the challenges of site-resolved imaging of fermionic “°K
with high fidelity, and the solutions used to overcome these challenges.

In Chapter 6, we describe how we produce, observe and characterize different
states in the Fermi-Hubbard model. We also discuss measurements of spatial spin
and charge correlations.

Finally, in Chapter 7, we provide a brief summary, and an outlook on the quantum
gas microscopy of strongly-correlated fermions.

Included in the appendices are:
1. Some technical details of the quantum gas microscope.

2. An incomplete but rather extensive list of s and p-wave Feshbach resonances in

40K.

3. Publications relevant to the research discussed in this thesis. Other topics that
I have been involved in during my PhD, namely, measuring the equation of
state of the unitary Fermi gas [80, 138] and the dynamics of solitonic vortices
[149, 81], have been described in previous dissertations [130, 79] by others who

led the effort, and will not be discussed here.

23



24



Chapter 2

Ultracold Fermi Gases

In this chapter, we present some background theory of fermions both in free space
and in a lattice. In Section 2.1, we discuss some aspects of the ideal non-interacting
Fermi gas, with an emphasis on spatial correlations. In Section 2.2, we describe the
nature of interactions in ultracold fermionic atoms, and how they can be tuned using
a Feshbach resonance. In Section 2.2.2, the specific case of interactions in 2D and its
peculiarities are discussed. We next focus on the case of interacting fermions on a
lattice. In a sufficiently deep lattice, the system can be described by the single-band
Fermi-Hubbard model. Some features of the Fermi-Hubbard model and its relation
to high-T, cuprates is discussed in Section 2.3.2. Research on interacting 2D gases

described in this chapter have resulted in the following publication:

A. T. Sommer, L. W. Cheuk, M. J. H. Ku, W. S. Bakr, and M. W. Zwierlein,
“Evolution of Fermion Pairing from Three to Two Dimensions,” Phys. Rev. Lett.

108, 045302 (2012) [131]. Included in Appendix E.

2.1 Non-Interacting Fermions

In three or more dimensions, the spin-statistics theorem require that particles are ei-
ther fermionic or bosonic. Fermionic particles obey fermionic statistics, which require

that the wavefunction is anti-symmetric under exchange of two identical fermions.
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This implies that two identical fermions cannot occupy the same quantum state, a
rule also known as the Pauli exclusion principle. This Pauli-blocking effect is a key
feature in fermionic systems, and leads to phenomena that range from the structure

of the periodic table to the stability of white dwarfs and neutron stars.

In this following sections, we will discuss a some features of non-interacting ideal
Fermi gases both in the bulk and on a lattice. Some of these results will be used in

subsequent chapters.

2.1.1 Ideal Fermi Gas in Free Space

In this section, we present some properties of ideal Fermi gases in 3D and 2D, with a
particular emphasis on spatial correlations. We first derive zero temperature 7' = 0
results. For a homogeneous system, the momentum k is a good quantum number.
By the Pauli exclusion principle, the ground state is formed by populating these
momentum states in order of energy up to kg, the Fermi momentum. This forms the
“Fermi sea,” where the Fermi surface is located at the Fermi energy of £ = %k%

The Hamiltonian in second quantization is given by
I:[ = Z&TkCLCk, (21)
Kk

h2|k|2
2m

where g = By counting the number of states below kg, one can relate kr to

the number of atoms N. In 3D, one obtains

where L is the system size. After rearranging, we obtain

krp = (6m°n) e : (2.3)
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where n is the 3D density. The Fermi energy is thus related to the density by

h? 2/3
Ep = % (67%n) (2.4)

In 2D, analogous reasoning gives
kp = (47n)"?. (2.5)
One notices that the in 2D, the Fermi energy Er o n, and is given by

o h?
Ep="

. (2.6)

For non-interacting (and weakly interacting) systems, the only states that can be
perturbed must lie close to the Fermi surface at p. In this regime, properties of the
system are governed the energy density of states D(F) g—g. Note that while the

density of states scale as n'/3 in 3D, it is constant in 2D.

Although the ideal Fermi gas is most easily solved in momentum space, the pres-
ence of a Fermi surface, i.e. a special wave-vector |kg| leads to non-trivial spa-
tial correlations. Consider, for example, the two-point correlator at equal times

G(x1;%3) = (1T (x2)1(x1)), where the field operator ¢ (x) is defined by

) = 3 e 27)
with V' being the volume of the system. Physically, this quantifies the correlation
between removing a particle at z; and simultaneously creating a particle at z5. In a
uniform system, G(x;,x3) is depends only by the difference r = x; — x5. In addition,
there is no preferred direction since the system is isotropic. One can thus define
G(r) = G(rz,0), with » > 0. In general, for a uniform system (whether interacting

or not),

1 iko 27 1 ik3r /A
G(r) = V2 Z " (el o) = v Ze 5 (), (2.8)
k

ko k1
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where ny = chk. In other words G(r) is the Fourier transform of the occupation of

momentum states. One immediately sees that any sharp feature in n, will lead to
oscillations in G(r). Specifically, for the non-interacting Fermi gas, G(r) will contain

oscillations at a spatial frequency of k.

To explicitly evaluate G(r) for the ideal Fermi gas in n dimensions, we make the

substitution Y, — (% [ d"k. This yields

1 sin(k (k
Gio(r) = 7TSm Fr) <Smk:F7Ijr) (2.9)
2
Gon(r) = kFJikwm ( J;:?ﬂm) (2.10)
Gsp(r) = W sin(kpr) — ; cos(kpr)
= n(ja(ker) + jo(ker)) (2.11)

in 1D, 2D and 3D respectively, where J,, are Bessel functions of the first kind and 7,
are spherical Bessel functions of the first kind. As one expects, lim, .o G(r) = n. The

oscillations occur in kr and decay as r”, where D is the dimension.

The measurement of G(r) requires annihilating and creating single-particle states
at physically separated distances. In other words, G(r) can only be directly ac-
cessed when the system is perturbed. Another quantity that can reveal spatial
correlations without manipulation of the system is the density-density correlator,
i.e. the correlator between densities at different points in the system, i.e. C(r) =
(YT (x)1(x)T(0)(0)), where x = ri. For non-interacting fermions, one can apply

Wick’s theorem to obtain

C(r) = (@'x)w)) (N 0)w(0) + (¥ (x)w(0)) (¥(x)¥!(0))
= n’+G(r)(=G(-1))
= n>—|G(r)] (2.12)

for 7 > 0. Defining the normalized two-point correlation function go(r) = C(r)/n?

one finds that lim, o go() = 0, a direct real-space manifestation of the Pauli exclusion
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Figure 2-1: Friedel oscillations at T'= 0. The two-point density correlation function
g2(kpr) for a 1D (solid), 2D (dashed), and 3D(dotted) Fermi gas at 7" = 0. Friedel
oscillations occur at spatial frequency of 2kr. The Pauli exclusion principle results
in go(kpr) vanishing as r approaches 0, and consequently produces the “Pauli hole”
at short separations.

principle, which forbids two fermions from occupying the same quantum state. The
resulting region around 7 = 0 where g5(r) is suppressed is known as the “Pauli hole.”
The first direct measurement of the Pauli hole, enhanced by interactions, will be
described in Chapter 6. In addition to the Pauli hole, one also notices that the
oscillations occur at spatial frequency of 2kr. These oscillations are known as Friedel

oscillations. go(r) for 1D, 2D and 3D are shown in Fig. 2-1.

We next discuss the case of finite temperature 7" > 0. At finite temperatures, some
states below kp are unoccupied, while some states above kr become occupied. In the
momentum basis, the occupation of each mode with momentum k can be computed

in the grand canonical ensemble. One finds that

1
"1+ exp(Blac— )’

(Tuc) (2.13)

where = 1/(kgT), with kg being the Boltzmann constant and p the chemical
potential. p is set to satisfy the constraint on the total particle number <N ). In

the limit of T" — 0, 4 — €p and nyi becomes a step function with a step at kp,
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Figure 2-2: Friedel Oscillations in 1D at Finite Temperature. The two-point density
correlation function go(kpr) for 1/8u = 0 (solid), 1/ = 0.3 (dashed), 1/6u = 1.5
(dot-dashed), and 1/8u = 5.0 (dotted) Fermi gas. At temperatures where \qg ~
27 /kp, Friedel oscillations are washed out, and the extent of the Pauli hole is now
set by A\gg.

signaling the location of the Fermi surface. As T increases, this step feature softens.
Additionally, a new length scale \gg, the thermal de Broglie wavelength, emerges.

The thermal de Broglie wavelength is defined by

h

—_— 2.14
vV 27ka‘BT ( )

AdB =

and is on the order wavelength associated with a particle with energy kgT. As T
increases, the de Broglie momentum 27 /App shortens. When this becomes much less
than kg, the step in ny, and consequently Friedel oscillations, is highly suppressed.
At finite temperature, the density correlation function is given by Eq. 2.8 with (ny)

given by Eq. 2.13. Finite temperature results for g,(r) in 1D are shown in Fig. 2-2.

2.1.2 Ideal Fermi Gas in a Lattice

Consider a particle in a lattice potential V(z) = Vysin® (kpx/2), where Vj is the
depth of the potential and kj is related to the lattice spacing via k;, = 27 /a. The
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first-quantized Hamiltonian H is given by

. 2

-1y V(x) (2.15)

2m

For a system with periodic boundary conditions, Bloch’s theorem applies. The eigen-
functions have the form v, (z) = €' ¢(r), where ¢(r) satisfies ¢(r + a) = u(r), and ¢
is the quasi-momentum restricted to ¢ € [k /2, kr/2]. This implies that ¢(r) consists
only of Fourier components of the form e/*.% where m is an integer. For each quasi-
momentum ¢, there are an infinite number of eigenfunctions that differ in energy.
These can be labeled starting from the lowest to the highest with a band index n.

One can expand the corresponding eigenfunction ¢,§")(x) in the basis {e'7TmF)r} a5

Y (x) =Y eetatminr — gl (g), (2.16)

m

where ™

; are complex numbers.

In this basis, the kinetic energy operator —%V2 is diagonal, while the lattice
potential couples components that differ by k;. Thus the Hamiltonian can be writ-
ten separated into a sum over terms H = > . ﬁq, where each ]:Iq acts only on the
subspace spanned by the states {ei(“”’“)x}, corresponding to states of a single quasi-

momentum ¢. The matrix representation in this basis is

N h? Vo
(Hq) . = %(q + nkL)2(5nm + Z((SnJer + 5n71,m) (2'17)
For convenience, we define the energy scale Fr = % (%L)Q, which corresponds to

the free-particle energy at the band edge k;/2 = m/a. We can then define the
dimensionless lattice depth f/o = Vu/FER, and the dimensionless quasi-momentum

G = q/kr. Upon substitution, (lflq> becomes

Vi
A(G + 1)26nm + — (Bps1m + Ont.m) (2.18)

(ﬁq> = br 4
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For each quasi-momentum ¢, the resultant matrix can be numerically diagonalized.
Here |n| gives the band index. Here, we consider the case where only the first band
is occupied, and the band gap to the second band is much larger than all relevant
energy scales. This limit is reached when the lattice potential is deep, and the chemical
potential of the system is well below the second band. In this limit, the system is
described by a single-band model. One can heuristically use a Hamiltonian of the

form
Hyp = —t Y élé;+he, (2.19)
(6,3)
where the creation (annihilation) operators ¢ (&) create (annihilate) particles on a
site 4, (i,j) denotes a pair of nearest-neighbor sites ¢ and j. This Hamiltonian de-
scribes particles hopping between neighboring sites with rate ¢t. Here ¢ > 0, indicates
that delocalization is favored. This is known as the tight-binding approximation.

To relate the tight-binding Hamiltonian to the original Hamiltonian, one first
defines localized orbitals at each site, which are known as Wannier functions. In
a deep lattice, where only the lowest band is energetically accessed, the Wannier
function for the lowest band centered at a lattice site at zy can be constructed out of

lowest band Bloch states as

(x — x0) Z ng (x — ). (2.20)
kEFBZ
An effective single-band Hamiltonian for the lowest band can then be obtained
by projecting H onto the basis of Wannier functions. The nearest-neighbor hopping
amplitude ¢t in Eq. (2.19) is then given by

t=— /_OO dx [w(aj) (—%VQ + V(a:)) w*(z + a)} (2.21)

[e.e]

In principle, the projection procedure does give rise to next-nearest neighbor terms,
such as next-nearest neighbor hopping term ¢' > -, é}éi—l—h.c., where ((7, 7)) indicates
a sum over next-nearest neighbors. At moderate lattice depths, this term (and longer-

distance hopping terms) can be ignored, as shown in Fig. 2-3.
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Figure 2-3: Ratio of nearest neighbor hopping amplitude to next-nearest neighbor
hopping amplitude, |¢’/t|, as computed from Eq. (2.21). The inset shows |t'| and |¢|
in dashed black and solid red lines respectively.

In experiments, the lattice depth V) can be measured, and one must determine
t from Vj. In practice, it is easier to determine ¢ by first computing the bandwidth
obtained by diagonalizing the lattice Hamiltonian in Eq. (2.18), and identifying it
with the bandwidth of the tight-binding Hamiltonian Hyg. For Hrp, the bandwidth
is simply given by 4t. This can be easily seen by solving Hrg. Defining operators

by = >, "¢, where j is the site index, one obtains

Hpp = —t Z (e 4 emha)plh, = Z [—2t cos(ka)] blby.. (2.22)
kEFBZ kEFBZ
The bandwidth of the lowest band can thus be identified with 4¢. The validity of this
method is shown in Fig. 2-4, where ¢ obtained from Eq. (2.21) is compared to that
obtained from the bandwidth.

With relevance to later sections on microscopy of fermions in a lattice, we next
discuss spatial correlation functions of non-interacting fermions on a lattice. We
consider here the tight-binding limit where one only needs to consider a single band

with dispersion €, = —2t cos(ka). Since we will be discussing fermions in a 2D square
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Figure 2-4: Nearest-neighbor hopping amplitude comparison. Shown in red solid
line is the nearest-neighbor hopping amplitude ¢ computed from Eq. (2.21); in black
dashed line is ¢ determined from the bandwidth of the lowest band.

lattice later, we discuss this case specifically. For a 2D square lattice, the dispersion
is given by
k = —2t [cos(kya) + cos(kya)] . (2.23)

We restrict our discussion of the correlation function G(x1,%3) to where x; and x3
are coordinates of lattice sites. Since discrete translation symmetry holds, in general,
the correlation function can be written as G(r) where r = n,a% + n,ay where n, and

n, are integers. In this case, we obtain the general relation
Gy == 3 (i) (2.24)
Vv ’ '

where (ny) is given by Eq. 2.13.

In anticipation of interacting fermions, we next consider the case of a two-component
Fermi gas with internal states o =1, ). We consider the balanced case where (7, 1) =
(niy). The correlator (n,n,) is unmodified, and is given by n2 — |G(r)|?, while
(NoT_y) = n2 where n, = (f;4), since T and | particles are uncorrelated. To sim-

~

plify notation, we define the connected correlator for two operators A and B

(A,B)¢ = (AB) — (A)(B). Note that when A and B are uncorrelated, (A, B)¢
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We define the connected density correlator
Cn(r) = (R, Nitr) (2.25)

where n; = )1, ,. Expressing in terms of the number operators 7, ;, we obtain

On(r) = = Z [(ﬁa,ia ﬁa,i+r>C + <'fla,i> 7CL—U,@'—‘,—]{'>C’]

g

= —2|G(r)]~ (2.26)

The sign of the connected correlator reveals whether the particles bunch or anti-bunch

spatially. One finds that, due to Pauli blocking, the total density anti-bunches.

Since we have a two-component system, we can also define spin-1/2 operators

N 1 . R
S.i = 5(7%1 — 7). (2.27)

We define analogously the connected spin correlator
Cs(r) = <‘§z,i>'§z,i+r>c’ (228)
This is again related to G(r), since

1 A A
Cs(r) = Z Z [<no',i7 na,i+r>C - <na,i7 nfa,i+r>0]

- _%|G(r)|2- (2.29)

Thus, we find that for non-interacting Fermi gas of two-components, the magnetic
moments gzﬂ- are always anti-correlated. For fermions on a lattice, the lattice spacing
forms an additional length scale. We focus here on the case of half-filling where
(n;) = 1. The function —|G(r)|? at half-filling at 7" = 0 is shown in Fig. 2-5. It is

negative and displays oscillations at wavevectors (1,0), (0,1) and (1,1).
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Figure 2-5: —|G(r)|? and log,, [|G(r)[?] on a square lattice, with r = n,aZ + nyagy. In
both cases, the point at r = 0 is set to zero.
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2.2 Interacting Fermions in Free Space

Before discussing interacting fermions, we first summarize constraints that arise from
fermionic statistics. We consider only two-particle interactions. The interaction

Hamiltonion can be factored into angular and radial parts. The radial part is given

by
Y I
=" mor  m 2

+ Vi(r), (2.30)

where r is the interparticle distance, [ denotes the partial wave channel, and we assume
the interaction potential is symmetric. At ultracold temperatures, we only need to
consider collisions that occur in the only lowest partial wave (I = 0) channel, as higher
partial wave channels are frozen out by the centrifugal barrier of A%I(I + 1)/(mr?).
For the energetically accessible [ = 0 s-wave channel, the interaction potential is
symmetric under exchange of two particles. Fermion exchange statistics require that
the total two-particle wavefunction be anti-symmetric under exchange. To satisfy
this constraint, the two fermions must be in different internal states. Further more,
their internal degrees of freedom must be antisymmetric, i.e. they must form a singlet
state. Consequently, one must need a minimum of two components for interactions

to occur; a single-component Fermi gas at ultracold temperatures does non interact.

To quantify [ = 0 collisions, one can describe two-particle scattering in 3D by the

wavefunction
P(r) = Yo(r) + f(k)Ys(r), (2.31)

where 1(r) = e*7 is the incoming wavefunction, 1,(r) = " /r is the outgoing

wavefunction, and f(k) is the scattering amplitude at relative momentum k.

The amplitude f(k) can be written as €2 sin(d)/k, where d is the phase shift of
the the outgoing wave. At low energies, f(k) is related to the s-wave scattering length
a via

1 1
kcotd = —= + =r.k? 2.32
co - + 27" ( )

where £ is the relative momentum of the two particles and r. the effective range.

At low enough energies where the effective range correction k?r. is negligible, the

37



scattering is completely characterized by a, and the amplitude takes the form

—a

fk) = 1+ ika

(2.33)

One notices that the function f(k) = \/m(E + i€)/h? has a pole when analytically

continuing F — —h?/ma?, for a > 0. This indicates that when the scattering length

a > 0, there is a bound state in 3D at energy —F}, where Ej, = h?/(ma?).

Since the scattering is characterized by a, one can replace the interatomic potential
with an s-wave pseudo-potential that produces equivalent phase shifts. A simple
choice is a pseudo-potential of contact type, Vi(r) = gd(r). This is reasonable as the
length scale of the interatomic potential is given by the van der Waals length, which

is much shorter than the interparticle spacing.

In order to describe an interacting two-component Fermi gas in the bulk, we use a
quantum field model with contact interactions. We denote fermionic quantum fields

by ¥,(x), where o =1,/ denotes the internal state. The Hamiltonian is given by
; o P oo g vt
- [ ixy {00005 720n 0 + 0l ()} (23)

with wavevector cutoff of A. When computing physical quantities, one needs to cut
off the momentum at some scale A, since the delta function interaction potential
requires renormalization in dimension higher than one. In order to relate to the
scattering length a, one requires that the reflection amplitudes or equivalently the
scattering phase shifts of this model agree with the s-wave scattering results when the
collision energy approaches zero. This can be accomplished by solving the Lippmann-
Schwinger equation for the amplitude A(F) in this model. As shown graphically in
Fig. 2-6, the Lippmann-Schwinger equation gives

iA(E) = —ig™ + (—ig™)O(E)(iA(E)), (2.35)

38



Figure 2-6: Graphical representation of the Lippmann-Schwinger equation. Here
the dot denotes that interaction vertex —ig™ while the shaded circle represents the
scattering amplitude i A(F). Figure reproduced from [16].

where [J(E) is given by

(B - / dkdE' 0 i
B (2m)3 B’ — h2k2/2m + ie E — B/ — h2k2/2m + ie

M (A TVE ), (2.36)

! 2mh? 2

where E = mE/h? and we have used a wavevector cutoff of A. To find the value of
g™, we require that the low energy E — 0 gives the correct scattering amplitude.

We find that
(A) (A)

-9 9
A(E) = —— _ _ (2.37)
L—ig®WO(E) 4 mat) (A +iZVE + z’e)

To relate A(E) to the scattering amplitude, we note that the scattered wave
1s(r) can be written as 1s(r) = —A(E)Go(r), where Gy(r) is the Green’s function
of the non-interacting Hamiltonian for the relative motion Hy = —fn—QVQ. In 3D,

Go(r) = —#ei’”. One finds that when g™ is set to

) _ 4h? a

2.38

g m 1—2Aa/7’ (2.38)
the correct scattering ampltiude is obtained, as
m —a

A(E) = = f(k). 2.39

4dmh? (E) 1+ ka J (k) (2.39)



2.2.1 Feshbach Resonances

In this section, we summarize some properties of s-wave Feshbach resonances relevant
for later chapters. For in-depth reviews of Feshbach resonances, one can refer to
(73, 24]. A Feshbach resonance refers to enhanced scattering between two atoms
when a molecular bound state becomes resonant. We restrict our discussion to s-
wave (I = 0) resonances. At the resonance, a molecular state becomes resonant with
two free atoms with relative scattering energy of £ — 0. This physically corresponds
to the phase shift § of the scattered wave approaching (n + %) 7, and the molecular
bound state energy approaching —FEp — 0. Since a molecular state can have a
different magnetic moment than free atoms, the resonance condition can be tuned
with a magnetic field. For example, ignoring the nuclear spin, which has a much
smaller magnetic moment, a molecular state arising from the singlet potential has
S = 0, and tunes differently from the state of two atoms that have non-zero spin
projection mg.

For the Feshbach resonances discussed in this thesis, they are classified as “broad”
resonances, where the scattering length «a is sufficient to determine all properties of
the system near resonance. As a function of magnetic field B, the scattering length

near a resonance can be parametrized by

A
a = Qg (1 — 5= Bo) (2.40)

For practical purposes, a resonance is useful if its width A is not too narrow (>~ 1G),
and its location is easily accessible (<~ 1000G).

On the repulsive side of the resonances, where a > 0, there are in fact two branches.
The branch above threshold (E > 0) corresponds to unbound atoms that repulsively
interact. The other branch is the molecular branch, where atoms are paired into
dimers with energy —Fp = h?*/ma?®. Since the lowest branch on the attractive side of
the resonance (a < 0) is adiabatically connected to the molecular branch, one can only
stay on the repulsive branch by preparing atoms on the repulsive side far away from

the resonance. Typically, near the resonance, the repulsive branch becomes unstable,
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while the molecular branch can be long-lived. In the molecular branch, atoms are

bound into bosonic dimers.

Our discussion so far has been restricted to the interactions of two particles. In
a many-body system, qualitatively new phenomena can emerge. For example, while
there is no two-body bound state on the attractive side (a > 0), at low enough
temperatures, there is a many-body bound state, corresponding to Cooper pairing of
fermions. More precisely, when the temperature of the system is below the superfluid
transition temperature T, Cooper pairing occurs and one obtains an s-wave BCS

superfluid.

As the scattering length is tuned across resonance from a > 0 to a < 0, the
Cooper pairs are converted into tightly-bound dimers, which can condense to form
a Bose-Einstein condensate, realizing the so-called BEC-BCS crossover. Experimen-
tally, the tunability of interactions using a Feshbach resonance is crucial in achieving
superfluids on the attractive side. Far on the attractive side, the superfluid transition
temperature 7, follows the BCS scaling, and decreases exponentially with the inter-
action energy. Consequently, superfluids are achieved only near Feshbach resonances,
where the interaction energy is strong relative to the kinetic energy. In this regime,
the superfluid is strongly interacting, and theoretical calculations are difficult due
to the fermion sign problem. Experiments on these superfluids can thus provide a

valuable platform to benchmark many-body theories.

In anticipation of a discussion of interactions in two dimensions, we note that at
the Feshbach resonance where the scattering length a diverges, the only length scale
that remains is the interparticle distance. This can be seen from Eq. (2.33), where
the scattering amplitude f(k) — i/k, and the scattering cross-section approaches
maximum value given by the unitary limit of o = 47w /k?. At T = 0, since the density
sets the only length scale, the system is scale-invariant. We will see that the situation

is very different in 2D.
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2.2.2 Interacting Fermi Gas in Two Dimensions

In the previous two sections, we have discussed briefly interactions for ultracold
fermions in three dimensions. In general, as dimensionality is reduced, the role
of quantum fluctuations are enhanced, and qualitatively new phenomena can arise.
Phase transitions can also take on a different character. For example, the low energy
excitations of a 2D s-wave superfluid are vortex-anti-vortex pairs, and the superfluid
transition is of BKT type, as observed directly in 2D BECs [49]. For fermions, one
can ask whether many-body pairing can survive above the superfluid transition tem-
perature T,, and explore whether a psuedo-gap regime of preformed pairs exists. To
investigate fermion pairing, we have performed RF spectroscopy on the dimensional
crossover from three dimensions to two dimensions. This work has been described in
detail in a previous dissertation [130]. Here, we will only discuss our measurements
in the deep 2D limit, with a perspective focusing on scale invariance. Similar spec-
troscopic measurements focusing on the 2D regime were performed in [38], which was
followed by momentum-resolved spectroscopy [37]. For a 2D Fermi gas in an isotropic
harmonic trap, scale invariance leads to a dynamical hidden SO(2,1) symmetry [111].
Signatures of SO(2,1) symmetry breaking in 2D Fermi gases have been observed in

measurements of collective excitations [140].

Before we describe the experimental measurements, we first discuss features of
interactions in 2D, which are qualitatively different than 3D. Following the normal-
ization convention in [109], the relative wavefunction of two particles scattering in 2D

can be written as

D) = olr) — FR) ™ (241

in the asymptotic limit of » — oo. With this convention, f(k) is dimensionless.

To obtain the form of f(k), we follow a slightly different approach than in 3D.
We begin again with the low-energy effective model of point contact interactions in
2D, Eq. 2.34. We first perform dimensional analysis on the terms in the Hamiltonian.
Setting A = 1 and m = 1, we express dimensions in units of length [L]. The kinetic

energy term has units [L] >, while the interaction term carries units of [g™] )",
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where D is the dimension. In 2D, the coupling constant must take the form

hQ
g™ = —cW (2.42)

m
where C™ is some dimensionless constant, that can possibly depend on the UV cutoff
A. This means that when D = 2, the system is scale-invariant. This is different than
the case in 3D, where one writes ¢ = %l, where [ is some length scale. In 3D,
the interacting Fermi gas is only scale-invariant at the Feshbach resonance, when the

scattering length a diverges, and [ ~ 1/A is only dependent on the cutoff.

The statement that scale invariance holds in 2D and C'™ is constant, however, is
not quite true. In fact, scale invariance does not survive renormalization. This is an
example of an anomaly, where a symmetry present at the classical level is broken by
renormalization. To see how this arises, recall that ¢/ has to be chosen such that
the scattering amplitude A(E = 0) agrees with the T-matrix. To find the form of
g we first compute the scattering amplitude A(E) = —gM /(14+ig™MO(E)), where
the term O(E) is given by

OE) = /dzqu’ ) )
B (2m)® E' — h2q%/2m +ic E — E' — h2q%/2m + ic
___im [ &g
@2m)2 R ) @2 — (F +ie)
. A
_ o im [T gdg (2.43)

2 h? Jo q2 — (E + ie)

Here, in addition to a UV divergence, which we have seen earlier in 3D, there is an
infrared divergence. This implies that an additional low-energy momentum scale Ay

must be present. For the case of £ = 0, one obtains

eV Co
1 — Coz25= In (A2/Af)
4mh?/m
— 472 4 In (A2/A2)
mCp 0
—47h?/m
= ——— 2.44
In (A2/AZ)" (2:44)
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where A? = A2exp [4”h0], and Cj is a constant. One observes that a new cut-
off independent energy scale %A% emerges from renormalization. Furthermore, the
coupling constant decreases logarithmically with the momentum scale, reminiscent of
the running coupling constant in QCD. We thus find that while scale-invariance can be
approximate for a limited range of energies, it is in general absent for any interaction
parameter A;. The only scale-invariant 2D Fermi gas with contact interactions is the

non-interacting gas.

Another peculiar feature in 2D is that the scattering amplitude is logarithmically

dependent on the energy. Using the Lippmann-Schwinger equation, for £ > 0, we

obtain
—g
E) = —2
A(E) 1+ ig0(E)
= —Co - - (2.45)
~ CogZatn (%) + CogZia [ (A2 = B) —In| = A3 + ir |
In the limit A > E, this becomes
—C
A(E) = 0 (2.46)

1= Copiz (ln <‘A OE‘> —|—z7r>,

where we have picked AZ < E. To bring this into a more familiar form, we pick Ag

such that > A2. Then

4mh?
AB) =
—fggo + In (%) + i
4 2
_Anhm (2.47)
In ( > + o
where FEj is defined as
h? h2A2 A h?
= EAQ 0 exp {W:Co} (2.48)

This directly indicates that scattering by an s-wave short-range potential is energy

dependent in 2D, with maximum scattering cross-section at £ = Ej. Unlike in 3D,
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where f(k) attains a maximal magnitude for any k at a — oo, in 2D, the maximal
cross-section depends on the scattering energy. For a Fermi gas, the resonance oc-
curs when Fr = Ej, and the resonance is thus density-dependent. To relate to the

scattering amplitude in Eq. (2.41), we relate A(FE) to f(k) and find that

47

J(k) = In(E/Ey) +im (2.49)

The reason that we label the energy scale in the logarithm by E, is as follows.
If one analytically continues F to —F;, — ie, A(—E, — i€) diverges, indicating the
presence of a bound state at —Fj. This implies that there is necessarily a bound
state for any interaction strength in 2D. This is different from 3D, where a 2-body
bound state only occurs for a > 0. Scattering in 2D can thus be parameterized by
the energy of the bound state Ej.

We experimentally detect this bound state through measuring its disasscoiation
spectrum with RF spectroscopy [46, 73]. To realize quasi-2D gases, we confine the
atoms with a deep 1D optical lattice along the axial direction. In a deep lattice,
different layers are decoupled, and each lattice well can be thought of as a harmonic
oscillator with frequency w. In the regime where the chemical potential ;1 < hw and
the temperature kg1 < hw, particles only occupy the ground state of each lattice
well, and the system is quasi-2D. In this quasi-2D limit, and in the case where Ej/hw,
the binding energy Fj, is related to the 3D scattering length a via [109, 14]:

Ey,  0.905
o = OXP <—\/27Tl/|a|> : (2.50)

where [ = \/W is the harmonic oscillator length.

To observe the bound state, we prepare a gas of 5Li atoms in the lowest (|1))
and third lowest (|3)) hyperfine states. By applying a radio-frequency (RF) drive
near resonant with the |1) — |2) transition, and detecting arrivals of |2) atoms, the
energy of the bound state can be measured. When dissociating a bound state, one
must supply at least an energy of E,. The RF response must therefore start at an

energy FEj, away from the single atom resonance. Our measurements of the bound
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state energy agree well with the energy from a two-body calculation. Although this
might be surprisingly given that we have an interacting system with many particles,
the unshifted bound state had been predicted earlier in a mean-field treatment of the
BEC-BCS cross-over in 2D [117]. Here, we will not discuss the evolution from 3D to
2D, as it has been described previously. We will only focus on the line shape of the

molecular response in the 2D limit.

RF spectroscopy can be interpreted as a tunneling experiment, since the pertur-

bation due to the RF pulse is described by [73]

Hi(t) = —-e™ (wgqm + h.c.) : (2.51)

which produces a tunneling current from the initially occupied |1) states to the un-

occupied |2) states.

One can calculate the transition rate I'rp(w) out of an initial state ¢ via Fermi’s

golden rule, which gives

T
Drr(w :E;MVI ‘ (By + hw — E), (2.52)

where F; is the energy of the initial state, B, = h2k%/m and V is given by

N Q
V=3

<¢2@/J1 +h.c. ) (2.53)

In 3D, for an initial bound state |¢,) < \/ke ™" /r, Kk = \/mE}/h?, we obtain

Tre(w) o ————8(hw — Ey)\/hw — B,

(k%2 + k2?)
oc *{F’e(m Ey)Vhw — By (2.54)

The first term comes from the matrix element, while the term 6(hw — Ep)v/Iw — E
comes from the density of states in 3D. This immediately suggests that in 2D, where

the density of states is constant, one might observe a step response at the threshold
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value of lw = E,. In particular, in 2D, [i) o kKo(kr), where K, (z) are modified
Bessel functions of the second kind. This results in a matrix element o¢ 5%75. The

total transition rate is thus

_®
(k2 + K22

E
x w—;&(hw — B). (2.55)

FRF(M) [0 H(hw — Eb)

One thus finds that applying Fermi’s golden rule results in a lineshape that consists

of a step feature at threshold fiw = Ej and a monotonic 1/w? tail.

In reality, |2), the final state that the atoms are transferred to, also interacts with
|3). These final state interactions lead to modifications in the lineshape. To estimate
the effect of final state interactions, one can examine the scattering amplitude A(E) of
the final state |2) atoms with |3). In 3D, we have found that the scattering amplitude
A(E) « 1/(1 + ia\/ﬁ) . The final density of states acquires an additional factor

proportional to |A(F)|?, which implies that the high-frequency behavior is modified

—3/2 ~5/2 beyond frequencies where (hw — Ej) ~ 7752 . Furthermore,
23

from w to w
from the form of A(FE), one only expects final state effects at high energies, and the

threshold behavior at iw ~ Ej should be unmodified.

In 2D, the scattering amplitude A(FE) vanishes logarithmically as 1/In(E) at
both £ — 0 and E — oco. One thus expects that the high frequency behavior is

modified from w™? to [wln(w)]”~. At threshold, we have a suppression of the form
| In((hw— E,)/E})| 72, where Ej is the bound state energy characterizing the final state
interactions. One finds that at hw = FEj, the response vanishes, in stark contrast with
the naive expectation of a step response due to the uniform density of states in 2D.
Furthermore, as long as the final state interactions are not zero, there is always a final

bound state. Thus, starting from a |1)-|3) bound state, one finds a bound-to-bound

response to a |2)-|3) bound state in addition to the bound-to-free response.

The exact form of the RF line shape for a 2-body bound state, taking into final
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state interactions, is given by [82]

EE,
E, In’ [E;/Ey)

+E (02 [(hw — Ey) /L] + 7T2)9(hw — Ey). (2.56)
The first term corresponds to a transition from the initial bound state to a bound
state between |2) and |3), hence the delta function. The second term contains the
step response due to the uniform density of states in 2D, the simple w2 scaling,
and logarithmic final state corrections in the denominator. We find good agreement
when comparing with the experimentally measured spectra, as shown in Fig. 2-7.
The observation of the lineshape softening near the threshold thus reveal breaking
of scale invariance in 2D in the interacting system of |2) and |3) atoms. This is
in contrast to experiments on 2D Bose gases, where scale invariance was observed
(62, 31]. Approximate scale invariance can be obtained if only a narrow range in
energy relative to Fg is accessed.
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Figure 2-7: Dissociation Spectrum of Bound Molecules in 2D. The blue solid line
indicates the fit to the lineshape taking into account logarithmic corrections from
final state interactions, and finite frequency resolution of the experiment. The red
dashed line shows a fit to the line shape without final state interactions. The peak
on the left corresponds to response from free atoms. A convolution with a Gaussian
response with width determined from the free atom peak is applied. The inset shows
a zoomed-in view of the near-threshold response.
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2.3 Interacting Fermions on a Lattice

In this section, we discuss some properties of interacting ultracold fermions confined
in an optical lattice. We describe how the Fermi-Hubbard model arises in the tight-
binding limit. The Fermi-Hubbard model is a prototypical lattice model for fermions
exhibiting strongly correlated behavior, and was first proposed decades before the
realization of ultracold atoms. One of the motivations to study the Hubbard model is
that it is believed to contain some of the essential aspects of high-T, cuprates, a class
of materials with a much higher 7T, than typical BCS-type superconductors. Although
superconductivity in these cuprates is not described by BCS pairing of electrons, the
precise mechanism remains an open question. To what extent phenomena of high-T.
cuprates are shared by the Hubbard model is not fully known, since the Hubbard

model, despite being simple, is only solvable in limited regimes.

2.3.1 Fermi-Hubbard Model in the Tight-Binding Limit

In this section, we describe how the Fermi-Hubbard Model arises in the tight-binding
limit. Suppose that the bandgap is much larger than all energy scales, i.e. Vy >
kgT, . Compared to the previous case of non-interacting fermions, we must now
include a term that captures interactions. Since interactions are two-body, in the

tight-binding limit, the interaction term must be of the form

Ui j
T’] Z c;f’gc;-,_acj,,acw. (2.57)

Z7J7U

For a translationally invariant and inversion symmetric system, U; ; = U};_;. To find
these coefficients, we project the bare Hamiltonian onto Wannier functions for the
lowest band, which are denoted by w(z — ja), for the Wannier function centered at

lattice site 7. We find that

U, = /dxdx'g(A)5(m—$')|w($)|2|w(l’/+ja)|2
= o [dntu@Plute+ ol (259)
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Here, since we only consider the Wannier function for the lowest band, the cutoff A
should be chosen as ~ 7/, where [ is the size of the Wannier function. Thus the

coupling constant to use is

) _ drh*a 1 _4mh*a

~ 2.59
m 1+ 2a/l m (2.59)

g

where the last approximation holds as long as a/l < 1.
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Figure 2-8: Ratio of on-site interaction to nearest-neighbor interaction Uy /U;.

From the definition of the Wannier function, one finds that w(z) o exp(—x/I) for
a characteristic length [. In the deep lattice limit, [ is approximately given by the
harmonic oscillator length of the effective harmonic oscillator at a single well. Thus
I o (Vo)~'/%. This implies that for deep lattices, U, /U4, o exp(C’VOlM) for some
constant C. We show Uy/U; as a function of Vo in Fig. 2-8. Since Uj is much larger
than other terms, in practice, we only keep the on-site term U,. In this limit, we

obtain the Hubbard Hamiltonian

. U
H=—t (; (C;UC]'J +h.c.)+ 7 2 0170017_Uci7_gci,0 - ZMUOZ’UQU’ (2.60)
,7),0 1,0 1,0

where U = Uy, i, is the chemical potential for the o species. When the populations
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of the two components are identicaly = p, = p_,, and we obtain

. U
H=—t Z (czacj,a +h. c)+ by Z 0370037_Uci7_aci,0 — Z czacw, (2.61)

</L7]> 70—

2.3.2 Phenomenology of the Hubbard Model: Metals, Band

Insulators and Mott Insulators

In this section, we describe some aspects of the Hubbard model. In the non-interacting
limit where U/t < 1, band theory is valid. When the chemical potential x is within
the band, the system is in a metallic state. When the chemical potential is above
the band, i.e. u > 2t, all states are occupied, and the system is band-insulating. As
long as the chemical potential u is sufficiently large, even at non-zero ¢, the system

remains band-insulating, as all states are filled.

An interesting scenario arises when g is at the middle of the band. Due to the
symmetry of the dispersion relation, there is on average half a particle per site per
spin state. This is the so-called half-filling point. From band theory, one expects a
metal. However, when U/t > 1, the interaction term suppresses the probability of
having two particles of opposite spin on the same site. Since having two particles of
the same spin is forbidden by the Pauli exclusion principle, we obtain a state with
exactly one particle per site (see Fig. 2-9). This state is insulating, and is known as a
Mott insulator. Unlike typical systems where an insulator occurs when the chemical
potential is within a bandgap, Mott insulators are insulating because of interactions.
Here, single-particle properties such as the density-of-states at p and the dispersion
relation are insufficient to describe the system.

Since the Mott insulator is driven by the interaction energy U, one expects that
it forms below a temperature 7' ~ U/kg. In the Mott-insulating state, the charge
degrees of freedom are frozen out, as each site has almost exactly one particle. Nev-
ertheless, there are residual degrees of freedom in how the spins align. As we shall

see, the spins tend to align anti-ferromagnetically.

The first reason for anti-ferromagnetic alignment is geometric, arising from a
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Metal Mott Insulator Band Insulator

Figure 2-9: States of the Fermi-Hubbard Model. Shown are the real space pictures
of the metallic state, the Mott-insulating state, and the band-insulating state.

property of the 2D square lattice known as “nesting.” In the tight-binding limit
and on a square lattice, the dispersion satisfies the property of —ex = exiq, where
Q = (7/a)(£1,£1). This can be verified by inspection of Eq. 2.23, and is known as

nesting.

The consequences can be understood graphically. Consider the case of half-filling
of a non-interacting Fermi gas on a square lattice. The Fermi surfaces for each spin
are squares with vertices at (7/a)(£1,0) and (7/a)(0,%1). A single wave vector at
(pi/a)(1,1) can therefore connect two edges of the Fermi surface, as shown in Fig. 2-
10. Due to the enhanced density of states at a specific separation of Q, in the presence
of interactions between 1 and | particles, the system becomes susceptible to formation

of spin order along (7/a)(£1, £1).

The tendency for spins to anti-ferromagnetically align has an additional energetic
origin that does not depend on lattice geometry. Consider a system deep in the atomic
limit (U/t > 1), and at half-filling. Although double occupancies are suppressed due
to the strong interactions, there is always a non-zero amplitude —t of a particle
tunneling to a neighboring site, as long as the neighboring site has opposite spin.
In this case, second order perturbation theory gives an energy correction of AE =
—4t?/U. Anti-aligned spins on neighboring sites are thus energetically favored. This
mechanism is known as super-exchange, and gives rise to anti-ferromagnetism when

U > 0. Thus, both nesting and super-exchange help in establishing AF order along
(1,1).
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Figure 2-10: Nesting on the half-filled square lattice. Solid lines mark the Fermi
surfaces for difference energies. The energy contours are marked in units of the
tunneling amplitude ¢. The red dotted lines indicates the Fermi surface (E = 0)
for the half-filled square lattice. The nesting wavevector (1,1) shown by the dashed
arrows connect two edges of the Fermi sea.

Although these arguments at half-filling, one at U = 0 and one at U > t, seem
to suggest that an anti-ferromagnet should form generically, the Hubbard model is
remains unsolved except for the special case of (n;) = 1, where the fermion sign
problem is avoided.

The reason that the half-filling case can avoid the sign problem arises from the
bi-partite nature of the square lattice. (The square lattice can be decomposed into
two sub-lattices A and B where the neighbor of one site of A is always in B and vice
versa). Although the bi-partite nature does not eliminate the sign problem away from
half-filling, it does lead to some additional symmetries, one of which we will discuss
below.
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Upon substitution, the Hubbard Hamiltonian becomes

. U
H=t Z (Cj,acjya +h.c.)+ by CZUCZ’_UC@_UCZ"U —(—p—0) Z cj-,acw, (2.63)

<’i,j>70' 7;,0' ’i,U

where we have discarded terms that are overall energy offsets.

On a square lattice, nearest neighbors are always on different sub-lattices. One
can thus apply a phase factor of €™ to one of the sub-lattices with no physical conse-
quences, while changing ¢ — —t. This maps the original Hamiltonian with chemical
potential i to the same Hamiltonian with chemical potential —u — U. The point
about which the transformation is symmetric is (n,;) = 1 and g = U/2. In other
words, the half-filling point always occurs at chemical potential = U/2. As will be
described in later sections, this symmetry upon particle-hole transformation simplifies

the analysis of some measurements.

We have described above some basic phenomenology of the repulsive Fermi-Hubbard
model on a square lattice. As mentioned earlier, the Hubbard model has received con-
siderable interest as it is generally believed to apply to high-T, cupate materials [83],
but it remains unsolved except in limiting cases. Although it is not known fully
to what extent the Hubbard model describe cuprates, the phase diagram of high-
T, materials show some features that coincide with those predicted of the Hubbard
model (see Fig. 2-11). Namely, at half-filling, i.e. “zero doping” in the language
of cuprates, one finds an anti-ferromagnetic Mott insulator. The anti-ferromagnetic
phase decreases as the system is doped away from half-filling, eventually giving way to
a superconducting phase at low temperatures. The superconducting phase is known
to have d,2_,2 symmetry, which indicates unconventional pairing [28]. The origin of
this however remains debated. In addition, there are a myriad of atypical phenomena
in the cuprates way from half-filling, ranging from pseudo gap behavior and anoma-
lous resistivity to the emergence of stripe order. How much of this is captured by the

Hubbard model remains to be seen.
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Figure 2-11: Schematic phase diagram of cuprates. Here, the dopant concentra-
tion of x corresponds to half-filling (n;) = 1. Note that unlike the phase diagrams
for cuprates, the phase diagram for the Hubbard model with only nearest-neighbor
tunneling is symmetric across half-filling. This symmetry is broken if a next-nearest-
neighbor tunneling term is added. Figure reproduced from [28].

2.3.3 Some Theoretical Approaches

In this section, we describe some of the theoretical approaches for solving the Hub-
bard model. We describe briefly those that are mentioned in this thesis. There is
a large amount of literature on various approaches that the interested reader can
refer to. Here, we describe 1) the atomic limit, 2) the High Temperature Series Ex-
pansion (HTSE) in ¢, 3) the Numerical Linked Cluster Expansion (NLCE), and 4)
Determinantal Quantum Monte Carlo (DQMC). Only the first will be derived.

By the atomic limit, we mean the case of U > t, where the effect of ¢ is ignored.
Here, to a good approximation, the lattice sites are isolated. The micro-state of each
site can be one of four possibilities: empty, filled with an 1 particle, filled with a |
particle, or filled with two particles. In the grand canonical ensemble, the partition

function can be written as
2181 = (1+ % + Cw)" = 25, (2.64)

where ¢ = exp(fu), w = exp(—pU), and N is the number of particles. From the
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partition function, the density can be obtained as

~ (0dlogZ 110logZ

_— = 2.65
The doublon density is given by
w dlog Z 1 10logZ
d(B.p) = o2 = c (2.66)

N 0w N U
In the case of a trapped sample, one can use the local density approximation, where

w varies locally.

To improve this approximation, one can perform perturbation theory about the
atomic limit. The perturbation arise from the tunneling term _tz<i,j> CZT c; + h.c,
and one can therefore perform a series expansion in ¢. For a more detailed discussion

on how this is carried out, we refer the reader to [97].

For convenience, we reproduce here the specific results for a isotropic square lattice

[97]. The grand partition function 2 can be expressed as

—BQIN =1Inzo+ Y 2" A((, BU)(BL)". (2.67)
r=2

Specifically, up to fourth order in (¢, the non-vanishing terms are A; = 2X; and
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A4 = 22,’ng + 620X3 - 7X4 + X5, with

Xi = 20 Cu)+ (- w)

Xo = pel+ o)t Do) - - u)

X, = §<<1+<w><1+24+<w>+6—§j<1—2<w+<w>
(2 = w) — 2001 - 20) + (2 — w)
b )1+ 2+ )

X, = X?

X5 = 204G+ + G =AW + )

8¢* 3 3 2

5U(( — )+ C(1—2¢ — CYyw + 23 (1 4+ Ow?)

8¢? 2 379 w?
_W((g_g)—g(1+8g—c)w+é(1 2¢)w”)

16C2 2 3

Fppt O
+C B+ ¢+ G’ — ). (2.68)

All thermodynamic quantities can be obtained from Z. The case of the an anisotropic

square lattice is described in [44].

HTSE is valid for high temperatures, but fails at low temperatures, when kg7 ~
t. A different theoretical approach that compare experimental results with is the
numerical linked-cluster expansion (NLCE) [121, 74, 134]. This method can be used
down to temperatures of kgT'/t ~ 0.3 for U/t ~ 8. The basis of NLCE is a linked-
cluster expansion (LCE), where the properties of a site is expressed as a sum over
contributions of clusters that contain the site. One can show that the only non-zero
contributions arise from linked clusters. In principle, LCEs allow one to compute
correlations up to the size of the largest cluster used. However, as correlations grow
beyond the size of the largest cluster, convergence issues can arise. In NLCE, the

properties of the clusters are determined by exact diagonalization rather than through
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series expansion methods. This means that as long as the range of correlations is much
smaller than the largest cluster size, the results should be reliable. For the Hubbard
model on a square lattice, at low temperatures, the magnetization displays staggered
order. The correlation length for the staggered order grows as the temperature is
lowered. When the correlation length becomes on the order of the size of the largest
clusters used, NLCE ceases to converge. For the temperatures experimentally reached
in this thesis, NLCE is reliable.

A different method that is in principle exact is determinantal quantum Monte-
Carlo (DQMC) [12, 146, 32]. In DQMC, one first applies the Hubbard-Stratonovich
transform to convert the Hamiltonian into bilinear form of fermion operators. The
new Hamiltonian can be made quadratic in fermion operators and thus can be inte-
grated exactly. This, however, comes at the expense of an an auxiliary field o(x,t),
which is a priori unknown. Using a path-integral approach, the partition function Z

can be written as a sum of determinants over auxiliary field configuration {o}.

2= pwy (2.69)

{o}
where the determinants pg,} are given by

N
P{o} = Tr{a} H exp[di]7 (270)
=1

and the trace is performed over all fermionic degrees of freedom for a specific auxiliary
field configuration {o} [86, 93]. The origin of the sign problem in DQMC simulation
lies in the determinants, which in the case of the repulsive fermi Hubbard model
away from half-filling is not positive-definite. Nevertheless, for the interaction and
temperature regimes explored in this thesis, DQMC is adequate. The calculations
for NLCE and DQMC presented in this thesis are carried out by two collaborating

theory groups.
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Chapter 3

Spin-Orbit Coupled Fermions

In this chapter, we discuss spin-orbit coupling of fermions. First, we will give some
examples of how spin-orbit coupling can give rise to topological phases. The case of
spin-orbit coupling in 1D, and how it gives rise to p-wave interactions is discussed. The
possibility to generate p-wave interactions has generated intense interest, since when
combined with s-wave superfluidity, Majorana zero modes can arise. These quasi-
particle excitations are non-abelian in nature and have been proposed as a platform for
fault-tolerant quantum computation. We will briefly describe some basic properties
of Majoranas and how they arise in a simple 1D model with s-wave superfluidity in
the presence of spin-orbit coupling.

After describing some motivations of realizing spin-orbit coupling, we describe how
we implemented and detected spin-orbit coupling in ultracold fermionic °Li. Through
a two-photon process using a pair of Raman beams, two hyperfine states are coupled
with momentum transfer, realizing spin-orbit coupling along with a Zeeman field. To
verify the presence of spin-orbit coupling and directly measure the spinful dispersion
relations, we used a method that we call “spin-injection spectroscopy”. We have
also applied spin-injection spectroscopy to a novel spinful lattice system by adding
an additional RF field on the spin-orbit coupled states. We demonstrate that spin-
injection spectroscopy can be used to measure both the band structure and the spin
compositions of the bands. The research described in this chapter have resulted in

the following publication:
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L. W. Cheuk, A. T. Sommer, Z. Hadzibabic, T. Yefsah, W. S. Bakr, and M. W.
Zwierlein, “Spin-Injection Spectroscopy of a Spin-Orbit Coupled Fermi Gas,” Phys.
Rev. Lett. 109, 095302 (2012) [23]. Included in Appendix E.

3.1 Why Spin-Orbit Coupling?

Spin-orbit coupling gives rise to many interesting phenomena, ranging from the fine-
structure in atoms to topological insulators in electronic systems. With “quantum
simulation” in mind, we describe a few examples that arise in condensed matter sys-
tems. One of the exciting recent discoveries are topological insulators, insulators that
are “topologically non-trivial” [53, 114]. Similar to ordinary band insulators, topolog-
ical insulators are band insulators in the bulk. They differ form ordinary insulators
not by symmetry breaking, but by a topological index, which is a global property of
the system. This new paradigm of classifying states that differ in a topological index,
but are identical in symmetry is the central notion of topological phases of matter. A
physical consequence of a non-trivial toplogical index in topological insulators is the
appearence of topologically-protected edge states that are immune to non-magnetic
disorder.

To see how spin-orbit coupling is connected to topological insulators, we start
with a well-known topological system - a 2D fermi gas in a magnetic field. This
system exhibits the quantum hall effect, where the magnetic field splits the spectrum
in to degenerate Landau levels. If the chemical potential lies within a gap between
Landau levels, one obtains an insulator. This insulator is topological, and can be
characterized by a topological number known as the Chern number. On a finite
system, the topological index must necessarily become trivial outside the system.
This in general produces topological edges states at the boundary that can exist
inside the bulk gap. In the quantum hall example, the edge states can simply be
identified with skipping orbits, since cyclotron motion is inhibited at the edge.

With topology in mind, and the idea that the edge states can reveal topolog-

ically non-trivial states (“bulk-edge correspondence”), one can explore how other
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topological materials can be generated. Using the 2D fermi gas in a magnetic field
as motivation, one can wonder whether a magnetic field, which breaks time-reversal
symmetry, is always required. This turns out not to be the case, as shown in the Hal-
dane model [50]. The Haldane model is a lattice model with next-nearest neighbor
tunneling matrix elements that are complex. Although no magnetic field is applied,
the system exhibits the quantum hall effect. The Haldane model, initially thought to
be not realizable, has in fact been simulated with ultracold gases, and the topological
index in different regimes has been directly measured [68]. Nevertheless, the Hal-
dane model still breaks time-reversal symmetry, as evident in the complex tunneling

phases.

To realize a time-reversal invariant topological material for a spin-1/2 fermionic
system, spin-orbit coupling is essential [53]. To see why this is the case, one can make
use of the “bulk-edge correspondence.” Without spin-orbit coupling, the Bloch states
inside a material are always two-fold degenerate, with the two-fold degeneracy arising
from the two possible spin states. This is a specific case of Kramer’s degeneracy, where
states appear in pairs in a time-reversal symmetric system. In the presence of spin-
orbit coupling, which still preserves time-reversal symmetry, the degeneracy is lifted
except at special points in the lattice. There are two ways the degeneracy can be

lifted, corresponding to two topologically distinct cases.

We will not describe topological insulators in detail, but rather describe two simple
examples that show how the topological properties can arise in the presence of spin-
orbit coupling. Both of these examples are 1D lattice systems that can be described

by a Hamiltonian of the form H= Dok H &, Where
Hy, = Ulh(k)Wy, (3.1)

U is a spinors and iL(k‘) is a 2 X 2 matrix. The topological properties are encoded how

the matrix (k) evolves as a function of momentum k.

The first example is the Su-Schrieffer-Heger (SSH) model, which is a simple Hamil-

tonian of non-interacting particles on a 1D lattice with two orbitals. The second ex-
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ample, the Kitaev chain, is an interacting system with novel topologically protected
many-body excitations. These excitations are Majorana modes, which can emerge in
a 1D superconducting wire composed of spinless fermions. The Kitaev chain can be
thought of as the lattice analog of a 1D p-wave superconductor, which has similar

excitations.

Recently, it has been proposed that the 1D p-wave systems can be generated when
one combines spin-orbit coupling, a transverse Zeeman field and s-wave superconduc-
tivity [124, 100, 2]. This has generated considerable interest, as Majorana modes
have been proposed as a platform for topological quantum computation [95, 3]. In
fact, recent condensed matter experiments on Kitaev wires produced in this fashion
have demonstrated signatures consistent with Majoranas [92, 1]. We will describe
briefly how effective p-wave interactions, necessary for a Kitaev chain, emerge from
underlying s-wave interactions when spin-orbit coupling is present. This is directly

applicable to the experimental scheme described in later sections.

3.1.1 The Su-Schrieffer-Heger Model

The Su-Schrieffer-Heger (SSH) model describes a 1D system with alternating A and
B sites, with two tunneling matrix elements ¢ and ¢’ describing tunneling from A to
B, and from B to A respectively (see Fig. 3-1a). This was first proposed to describe
polyacetylene, where the A-B structure emerges due to the Peierl’s instability [54].
The SSH Hamiltonian is given by

_H = —t Z éL,iéB,i — t/ Z 6271»637(7;_1) + h.c. (32)

Defining 1 ({) to represent the internal index A (B), we can define the operators ¢,

as

éa,l = Z éa,keik(la) (33)
k
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where ¢ =1, and a is the spacing between adjacent sites.

limit, H is diagonal in £, and H  1s given by

~

One can rewrite Hj, as

Hy = ULh(k)T,
where \ifk = (éﬁ]w éJ”k)T and

. 0 t 4 t'e e

t + t'ethe 0

H, = —Zfé];’ké%k — t’éi’kéme”m + h.c.

= — [t + t' cos(ka)] 6, — t'sin(ka)d,

In the thermodynamic

(3.4)

(3.6)

where ¢; are Pauli matrices and ¢ and t' are assumed to be real and positive. The

single particle states are thus characterized by k-dependent spinors.
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Figure 3-1: The SSH Model. (a) Diagram of SSH Model. A and B sites are marked
by red and blue respectively. (b) Shown are the paths traced out by the o, and
o, components of h(k) as k goes through the Brillouin zone. The red dashed line
indicates the case when #'/t = 1.2, while the blue solid line is for ¢/t = 0.8. The

origin is forbidden as long as ¢, ¢’ # 0.
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The extra spin-1/2 internal degree of freedom, compared to the spinless case, leads
to the qualitatively new feature of a topological index. The origin of this topological
index can be simply understood by considering a generic spin-1/2 system. For a spin-
1/2 system, a 27 rotation on the Bloch sphere results in a phase factor of €'™; a 4w
rotation is needed for the spinor to return to itself. Consider now fz(k:) for different
ratios of ¢ /t'. In the case of a lattice, after a round trip on the Brillouin zone, the state
must return to itself modulo a phase factor. For a spin-1/2 system, the phase can be
either 0 or m. These two cases are topologically distinct, as they are not connected

by any perturbation of the Hamiltonian that does not close any gaps.

Specifically, the eigenvectors of h(k) are given by |+) at energies F+/(t + /)2 + (')2.
When ¢/t' > 1, as a function of k € [—m/a,7/a], the Bloch vector (£|5|+) traces
out a path that does not enclose the poles with (o,) = (o,) = 0 (Fig. 3-1b). Thus
when one adiabatically goes through the Brillouin zone by 27/a, the state returns
to itself. However, when ¢/t < 1, the pole is enclosed, which implies that the state
accumulates a phase factor of €™ = —1. As long as t,t' # 0 and t # t, the Bloch
vector can never reach the poles. We thus see that even though both case of ¢/t' > 1
and t/t’ < 1 are gapped, they differ by the phase accumulated in one round trip of
the Brillouin zone. This phase factor for a 1D spin-1/2 lattice Hamiltonian is known
as the Zak phase, and is a topological index. More generally, this phase factor can
be written as the integral of the Berry connection (£|i0|%) over the Brillouin zone.
In this form, the phase factor can be extended to higher dimensions. For example, in

2D, the Zak phase generalizes to the Chern number.

So far, the topological index has been obtained by considering how the eigen-
state varies in a round trip around the Brillouin zone. We next describe a physical
consequence of topology, the appearance of edge states in the interface between two
topologically distinct materials. We show specifically how edge states arise the SSH
model, or in general any spin-1/2 Hamiltonian that respects chiral symmetry. Con-
sider the case where t/t' changes spatially from > 1 at z < 0 to < 1 at > 0. Clearly,

the two sides are topologically distinct, and gapped. At ¢ = ¢/, the gap must closes.
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Setting ¢’ = 1, and ¢t = /(1 + m(x)) and expanding at k = 7/a, we find that
h(k) =t'(m(x)o, — akdy). (3.7)
We can replace k — (h/7)0, to obtain

h(k) = t' (m(z)6, + iad,5,) (3.8)

This equation is also known as the Jackiw-Rebbi equation [65], and has the follow-
ing properties. Since {az, ﬁ(k’)} = 0 (chiral symmetry), eigenvectors come in pairs
at energies =F. The special case is when E = 0. Here, suppose the spinor is given

by (u,v)T. Then the coefficients u, v must satisfy the following equations:

(m(z)6, + ady)v = 0

(m(z)6, —ady)u = 0 (3.9)

At large |z|, one of the solutions exponentially decrease, while the other exponentially
increases. In order to satisfy the condition of normalizability, one finds that the state

must be given by

z ’ / 1
Y(x) = e Jo mla)/ade . (3.10)
0

At large |x|, one finds that the state decreases exponentially as exp[—(m(£o0)/a)x].
If the slope of m(z) is changed, then the normalizable state is proportional to (0,1)7.
This implies that if one has a finite region where the Zak phase is 7, localized states
occur at the edges of this reigon. Energetically, they occur in the middle of the band,
which is gapped in the bulk. At one edge, the bound state is 1, and at the other
edge, the state is . These correspond to the state being entirely on site A or site B.
Thus one sees that at the location where the topological index changes, or where the
mass term m(x) in the Jackiw-Rebbi equation changes sign, there exists a localized
state. These states are pinned at the boundary, and survive as long as the topological

indices on each side are unchanged.
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3.1.2 Obtaining p-Wave Interactions via Spin-Orbit Coupling

In the previous section, we showed that the coupling of an internal degree of freedom
(“spin”) with the orbital motion produces topologically non-trivial bandstructures,
and how localized zero energy states occur at the boundaries of topologically distinct
regions. In this section, we discuss how interactions can be modified with spin-orbit
coupling. Specifically, we discuss how p-wave interactions can arise out of underlying
s-wave interactions. It turns out that p-wave interactions can lead to interesting

many-body states.

To see how p-wave interactions arise, we first consider the dispersion relation in
the presence spin-orbit coupling. Spin-orbit coupling is simply the coupling of the
motion of a particle with its spin. For simplicity, we assume it has the form Aspqo..

The free-particle Hamiltonian for the two spin states can be written as

2.2

B q
H="2 1 )soqo. 3.11
5 + Asoqo ( )

The dispersion is shown in Fig. 3-2a, and consists of two parabolas displaced by @ =
(2mAso)/h. At this point, for interactions to occur, one must still have two Fermi seas.
The spin-orbit coupling term alone is simply a spin-dependent momentum shift, and
the two energy bands for different spins are not coupled. The situation changes when
when one applies a transverse Zeeman field (A{2g/2)o,. The Hamiltonian becomes
h2q? hQr

H ==+ Asoq0 + — 0, (3.12)
and an avoided crossing appears where the two free-particle dispersions touch. The
resulting dispersion contains two spinful bands separated by the spin-orbit gap. When
the chemical potential p lies within the spin-orbit gap, only the lower band is occu-
pied, and one effectively a single-component Fermi gas. Nevertheless, the fermions
are able to interact, since opposing momenta have different admixtures of spin up and

spin down. The interactions vanish when the momentum difference of two fermions

approach zero, since the spin compositions become identical. Thus, one obtains effec-
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tive p-wave interactions in a single-component Fermi gas, which at low temperatures

can exhibit BCS-type pairing.
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Figure 3-2: Spin-orbit bands. Here, the color denotes the spin composition, with blue
(red) indicating |1) (]J)). (a) With only the spin-orbit coupling term, we obtain two
free particle dispersions shifted by momentum @ = Er/\so, with Er = h?Q*/(2m).
(b) In the presence of a transverse Zeeman field of amplitude h£2/2, the crossing at
@@ = 0 becomes an avoided crossing. A spin-orbit gap emerges with size Q2. (c)
When hf2r = FEg, the bottom band changes from having two minima at ) # 0 to
having a single minimum at @) = 0.
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3.1.3 The Kitaev Chain

We showed in the previous section how spin-orbit coupling along with a Zeeman field
can lead to effective p-wave interactions, thus also pairing, in a spinless Fermi gas. In
this section, we give an example of how this can lead to interesting many-body states.
Specifically, we will discuss the 1D Kitaev chain, which has topologically protected
Majorana zero modes. These Majorana modes possess non-Abelian exchange statis-
tics, and has been proposed as building blocks for topologically protected quantum

computation [95, 3].

Before discussing the Kitaev chain, we briefly describe some properties of Majo-
rana zero modes. The defining feature of a Majorana zero mode is that it is described
by a fermion operator that is self-conjugate. One can construct two Majorana oper-
ators 7; and 7, from fermionic creation and annihilation operators é' and é simply

via:

1
~ _ AT A~
= —(c'+c
71 \/5( )
1
Ny = (& —¢é) (3.13)

V2i

For now, this is just a mathematical transformation. By inspection, one sees that the

new operators satisfy &J = 4;. They also obey the commutation property

frafl =22 = S({d b+ {dheh) = 1. (3.14)

One can also check that {71,792} = 0. In other words, these operators obey fermionic

commutation relations. In terms of 4; and 7., one finds that the number operator is
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given by
i 1 . N =
cec = 5(71 +i92) (91 — i92)
1 . . i
= 5(’7% + 45 + i[%2, %))
= 14 i, %]

= 14 2i4% (3.15)

Although one can always apply the above transformation to obtain Majorana
operators, theses operators are only physically relevant in systems where they diag-
onalize the Hamiltonian. In the context of many-body systems, this translates to
finding systems whose quasi-particle excitations can be described by Majorana op-
erators. We saw that the Majorana operators are a combination of a creation and
annihilation operators. This suggests that the Hamiltonian must contain terms that
involve éfét or é¢, in order to mix particles and holes. For the usual s-wave super-
conductors, particles and holes are mixed by the superconducting order parameter
A. However, due to the nature of the interactions, i.e. only opposite spins interact,
the mixing is between o particles, and —o holes. We thus require a Hamiltonian of
paired spinless fermions. The Kitaev chain is precisely this. It is a 1D lattice model
of spinless fermions with nearest-neighbor pairing, and is described by the following

Hamiltonian
A=y ey =t (e +he) + A (e, +he). (3.16)
J J J

To see how Majoranas arise, we consider the case where A = ¢, and u = 0, and
the chain is NV sites long. We define Majorana operators 4; ; and 4 ; in analogy to

Eq. (3.13), which are given by

. 1+ .
My = E(C}JFCJ)
. 1 . .
g = —=(—¢) (3.17)



The Hamiltonian can then be expressed as

[y

H = -t Z (C;(éjﬂ + éj’+1) + (6;+1 + éj+1)éj>
j:
N-1
= —V2ty (é}%,jﬂ - @j%jH)
=0
N—-1
= =2t Y Ao A141 (3.18)
7=0

It is evident that in this form the Hamiltonian does not contain the terms 4, 5 or
Y1,0. These Majorana modes, which are at zero energy (u = 0), cost no energy, and
are completely localized on the edges. The two Majorana modes can be described in
terms of a pair of normal fermion operators f and fT that are delocalized on the two
edges. We thus find that at g = 0, the ground state is two-fold degenerate, where the
two many-body states differ from one another by the occupation of a highly non-local
zero-energy fermionic mode. A crucial property of these Majorana modes is that they
are non-Abelian under exchange [3]. More precisely, suppose one has N wires with
Majorana modes 74, and yp, at the edge of each wire labeled by 7. This results in
a 2V degenerate sub-space. In a single wire, two majorana modes are either both
occupied each by 1/2 a real fermion, or unoccupied. This cannot be changed since
the parity of the fermion occupation is conserved. However, with multiple wires, one
can engineer couplings of the from 44 ;95 ;, which conserved the parity of the total
system. Adiabatically switching on these terms, however, can change the internal
state within the degenerate subspace. By moving Majoranas in this fashion, one can
exchange Majoranas, and the operation is non-Abelian, since the state does not return
to itself. This type of operation, known as “braiding,” is not sensitive to the details
as long as the system is adiabatic. In this sense, a quantum state can be encoded
in the degenerate subspace spanned by the Majorana modes. Since a real fermion is

highly delocalized, this can be immune to local noise.

So far, we have only shown that Majorana fermions arise for a specific choice

of A and pu. To connect the existence of these edge states with topology of the
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bandstructure, we rewrite the Kitaev Hamiltonian in the form H = \I/Lil(k’)\lfk Here,

due to pairing terms, we choose ¥ = (¢, éik)T One then finds that fz(k:) is given by

W) = —u/2 — tcos(ka) —isin(ka)
isin(ka) p/2 + tcos(ka)
= — (g +t cos(ka)) 0. + Asin(ka)d,. (3.19)

Using a similar argument to the one we used earlier when discussing the SSH model,
namely, whether the poles corresponding to eigenstates of &, are enclosed, one finds
that there are two topologically distinct phases for |u| < 2t, and || > 2t. The specific
example with Majoranas correspond to the first case. One specific example of the
second case is when p > 2t. If we take the limit of ¢ — 0 and A — 0, this corresponds
to isolated sites. The Majorana operators 7 ; and 92 ; are only coupled to each other

at every site ¢, and there are no decoupled Majorana edges modes.

We next explicitly show for the Kitaev chain, why one needs a spinless Fermi
gas to realize Majoranas. Suppose for the moment that the pairing arises in the
usual fashion from s-wave interactions. The analogous 1D Hamiltonian now has an

additional spin index o =7, ], and is given by
H=—p Y e =t Y (otiine +he) + A3 (e el +he). (3:20)
3o 3o J,o

We again consider the case where p1 = 0, i.e. the chemical potential is exactly half-way
inside the gap. Just as for the Kitaev chain, we consider the special case of t = A.

We define new operators, which as we shall see are not Majorana operators, 41 ;, and

&2,]',0 by

R 1
Mo = E
1

Yoo = —=(Cio — Cjo) (3.21)



Although one can rewrite the Hamiltonian in terms of the new operators as

N—-1
—2it Y Ao it1-0n (3.22)

j=0,0

q

where the localized modes 411, and %2 v, are decoupled, these modes are not Ma-
jorana modes. From Eq. (3.21), one sees that ’“yha = Y15—o and ’Ay;j’g =Y, —0. We
see explicitly that in this case, o particles are mixed with —o holes. These states are
in fact the lattice analog of Andreev bound states.

Motivated by the prospect of creating Majorana fermions, the method of gener-
ating effective p-wave superconductors with spin-orbit coupling is actively pursued
in 1D nanowires [124, 100, 2|, where signatures consistent with Majoranas have been
detected [94, 1].

As described in the following sections, although we have not yet combined spin-
orbit coupling with BCS pairing and obtain p-wave superfluids, we have implemented
spin-orbit coupling with a transverse Zeeman field in ultracold fermionic °Li atoms,
and directly observed the spin-orbit bands. By adiabatically loading atoms into the
lower spin-orbit band, we have also observed spinless Fermi gases with spin compo-
sitions that allow for effective p-wave interactions. Effective interactions in a single

component Fermi gas with spin-orbit coupling have been observed directly [147].
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3.2 Implementing Spin-Orbit Coupling with Ra-
man Beams

Many different methods, ranging from Raman coupling to super-lattices, have been
proposed to realize spin-orbit coupling in ultracold systems [27, 40]. In general, “spin”
denotes an internal degree of freedom, and can correspond to hyperfine states, energy
bands or different orbitals in a lattice [85, 133, 39, 84|. For the research described in
this chapter, we use a simple scheme that produces spin-orbit coupling in 1D. The spin
is mapped to hyperfine states of the ground manifold, and the coupling is realized by
a pair of non-copropagating Raman beams [57]. The perspective of viewing Raman-
coupled internal states as spin-orbit coupling was pioneered with 8’Rb BECs [85],
where the modification of the dispersion relation was inferred by the momentum of

the condensates.
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Wa Wp
X
o
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Figure 3-3: Raman coupling two ground states with two photons via an intermediate
excited state.

In this section, we describe how Raman coupling leads to spin-orbit coupling with
a transverse Zeeman field. First, we describe Raman coupling without considering
the motional state of the atom. In Raman coupling, we change the internal state of an
atom via a two-photon process. In the simplest example, we consider a 3-level system

with two ground states |a), |b) and an excited state |e). Without loss of generality, we
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consider the case when |a) and |b) are degenerate, and are hwy lower in energy than
le). Consider two laser beams with frequency w, = wy — A and w, = (wg — A) — 4§
that couple only to the |a) — |e) and |b) — |e) transitions respectively, as shown in
Fig. 3-3. We consider the case where the single photon detuning A is much larger than
the excited state linewidth I'. Suppose the beams have equal intensity such that the
|a)-|le) and |b)-|e) matrix elements are both A2, where €2/2 is the single photon Rabi
frequency. When ¢ = 0, second order perturbation theory gives a matrix element of
hQ?/(4A), corresponding to a two-photon Rabi frequency Qg of Qr = Q?/(2A). To
derive the Hamiltonian in the case of non-zero 9, it is simpler to consider the dressed
state picture, where we take into account the energy of the photon. We dress |a)
atoms with the w, light field and |b) atoms with the w, light field. These two states

are coupled by h€lg/2, but are split by hd. The effective 2-level Hamiltonian is then

. 5/2  hQg/2 QO
H= / w2 _ 05 4 My (3.23)

AL /2 —6/2 2 2

where in the last equality we take Qg to be real, and &; denote Pauli matrices.

To see how spin-orbit coupling arises, we next consider the motional degrees of
freedom. Suppose the two Raman beams are not co-propagating. An atom in state
|a) with momentum & can absorb an w, photon and emit an w, photon. As a result,
the internal state changes to |b). In order to conserve total momentum, the atom also
receives a momentum transfer of AQ), where () is the wavevector difference between
the two Raman beams. The internal degree of freedom (spin) is thus coupled with
the motion (orbit) of the atom. To take into account momentum, we extend the

Hamiltonian in Eq. 3.23 by adding the free-particle dispersion e, = h?k?/(2m).

H = ) H
k
RPk+Q)?* 6 Qg
- 2 2
Zk: o, h2k22 s |- (3.24)

2 2m 2
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Up to a constant energy shift, we rewrite the Hamiltonian in a symmetric form

h2(+Q>2+(5 hQg
A=y | 2 175 2 2 (3.25)
2 g h_Z(q_Q) _9
2 om 2 2

In this form, we define ¢ to be the quasi-particle momentum. Note that the |1) and

|} states for each ¢ have real momentum ¢ + @)/2 and ¢ — @)/2 respectively. One

must keep this in mind when interpreting the experimental measurements.
Rewriting ﬁq in terms of Pauli matrices ; acting on the subspace for the internal

states, one obtains

. h2q? 0 hQ) h?

where Er = h2Q?/(2m), and constant energy offset terms are dropped. Note that Er
is defined differently here than in Section 2.1.2. Performing a rotation in the internal
space of 6, — 0y, 0, — 0, and 6, — 0, and rewriting in terms of the dimensionless

quantities § = ¢/Q, 6 = 6/Eg and Qp = Qr/FEr, we obtain

H, = Eg

1 + (q - g) Gy + %a] . (3.27)
Expressed in this form, it is apparent that we obtain a spin-orbit coupling term
proportional to go,, and a mixing term Q6. that acts as a transverse Zeeman field.
The transverse Zeeman field is directly proportional to the two-photon Rabi frequency
Qgr. One also notices that spin-orbit coupling can be thought of as a momentum
dependent Zeeman field B = £& (0, 2q + 5 Q. R), where g is the electron g-factor and

9BB
w1 is the Bohr magneton.

3.2.1 Raman Coupling in Alkali Atoms

In the case of alkali atoms, the two-photon Raman coupling relies inherently on spin-

orbit coupling inside the atom, between the spin S and the orbital momentum L of
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the valence electron. This is because the light field couples to the orbital momentum
L, and cannot change either the nuclear spin I or electron spin S. The spin-orbit
coupling term in L # 0 states in the atom thus allows two-photon transitions to
couple different hyperfine states in the ground L = 0 manifold. Here, we discuss
the specific case of spin-orbit coupling between hyperfine states in the ground sy,
manifold using a two-photon transition, with excited p;/, and ps/s levels acting as
intermediate states. The p;/, and p3/, states are split by Ago. For simplicity, we
ignore hyperfine structure here. Consider a two-photon Raman process that couples
the two |J = 1/2,m; = £1/2) states. For concreteness, suppose the two beams have
polarizations o, and 7 and are on two-photon resonance. The Raman process involves
transitions shown in Fig. 3-4, and proceeds as follows. An atom in |1/2, —1/2) absorbs
a photon from the o beam and emits into the 7 beam, ending in |1/2, +1/2). Suppose
that the Raman beams are red-detuned A from the J = 3/2 manifold. The matrix
element due to the [3/2,1/2) state is proportional to v/2hQ?/(3A), while that due to
11/2,1/2) is —v/2hQ?/(3[~Aso + A]), where we assume both ¢, and 7 beams are
of equal intensity with single-photon Rabi frequency of 2. The effective two-photon
coupling is thus given by

Q2V2 (1 1
S ey (IS 2
23 (A+ASO—A) (3:28)

At large detuning 9, this is approximately

1 A

One inevitable effect of near-resonant light is spontaneous scattering. In the limit
where the single-photon detunings A and Ago — A are large relative to the natural

line width I', the off-resonant spontaneous scattering rate is given by

[y = (%)2 g (% + m) , (3.30)
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Figure 3-4: Raman coupling via p;/» and p3/; excited states. Shown are the Clebsch-
Gordan coefficients for the relevant transitions that couple my = —1/2 — my = 1/2

via o, and 7 polarized light. As expected, the contributions to the two-photon
transition amplitude from the p;/; and ps/, states are opposite and cancel at large
single-photon detuning.

where we have assumed that the population is equally distributed between mg =
+1/2. At larger detunings A > Agp, one notices that the spontaneous emission rate
scales as 1/A? similar to the Raman coupling. Unlike the case for optical dipole
traps, further detuning does not reduce the relative spontaneous scattering rate. A
useful figure of merit is the two-photon Rabi frequency to spontaneous emission rate
to & = |Q@)|/T.. At large detunings, & — %ASO/F. Since spin-orbit coupling is a
relativistic effect that strengthens with the atomic number Z, heavier atoms have a
larger splitting Ago and hence a better figure-of-merit €. In Fig. 3-5, we show ¢ for

SLi, as a function of detuning A.

3.2.2 Raman Coupling in Li

Our apparatus for generating spin-orbit coupled Fermi gases starts with degenerate
fermionic °Li sympathetically cooled by ?*Na, as described previously [47, 150]. In
this section, we discuss specifically Raman coupling for °Li. Due to its low mass, %Li
has a 2p;/2-2p3/2 splitting of only h x 10 GHz and a linewidth of h x 6 MHz. The
resulting maximum ratio of two-photon Rabi frequency to spontaneous emission rate

&, ignoring hyperfine structure, is only ~ 27 x250. Hyperfine structure further reduces
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Figure 3-5: Figure-of-merit ¢ of Raman coupling in °Li ignoring hyperfine structure.
Shown is { as a function of red detuning A from the p3/, level. The optimal ratio §
is obtained 4.0 GHz to the blue of the D1 line.

this number by some factor S. Therefore, in order to minimize the spontaneous
scattering rate, one must choose judiciously which hyperfine states to use.
In the presence of a magnetic field, the Hamiltonian for the ground state manifold
is given by
H=AI-S+ gsupBS, + qiupBL, (3.31)

where A is the hyperfine constant, gs (gr) the electron (nucleon) g-factor, and up
is the Bohr magneton. Since H commutes with F, = S, + fz, the quantum number
mp = mg + my remains good when B # 0. Furthermore, it is clear that only pairs
of states |ms = 1/2 =1, m;) and | |, m; + 1) are coupled. For |mp| < I + 1/2, the
Hamiltonian projected on to this spin-1/2 subspace is

. A . B m Omp 4 4

where o = \/I(I +1) —m2 + 1/4. Diagonalizing this matrix gives the Breit-Rabi
energy levels, shown in Fig. 3-6a. For |mp| = I+1/2, the eigenstates are the stretched
states | 1, 1) and | |, —I), with energies (AI/2) + (95/2 + g;1)upB.

Since the Raman coupling changes mg by 1, the strongest coupling occurs between
states with maximally different mg projections. At high-magnetic fields, where mg

and m; are approximately good quantum numbers, the coupling is strongest for states

78



with opposite mg and identical m;. At low fields, the hyperfine interaction couples the
electron spin S and the nuclear spin I, and mg and m; are no longer good quantum
numbers. The experiments described in this chapter take place at low magnetic
fields. In °Li, the nuclear spin I = 1, which gives two hyperfine manifolds F = 1/2
and F' = 3/2. In the presence of a magnetic field, the six hyperfine states, labeled |1)

to |6) from lowest to highest energy, can be written in the |mg, m;) basis as

1) = cosfys| 4,0) +sinb_ysf T, —1)

2) = cosfisl 4, 1) + sinf | 1,0)

3) = [L-1)

[4) = cosO_ijp| T, —1) —sinf_yp| |,0)

5) = cosbip| 1,0) —sinbypf ], 1)

6) = |[1,1) (3.33)

where tan(20,,,) = —am.A/ (B(—griir + gspts) + mpA). The mixing due to hyper-
fine coupling A is maximal at B = 0. At high fields B > A/(gspB), Om, — 0; this is
the Paschen-Back regime, where the magnetic moments are determined primarily by
mg.

The lowest three hyperfine states in °Li are stable towards pairwise collisions
among any two. From Eq. (3.33), at low magnetic fields, it is clear that one should
use one of the stretched states (|3) or |6)) in order to have maximally opposite mg
projection. Using Eq. (3.33), we compute the magnetic field dependence of the Raman
coupling, shown in Fig. 3-6a. We find that the optimal combination is |2)-|3). In order
to satisfy selection rule of Amp = 1, one requires a pair of Raman beams with 7 and
o4+ polarization. With this choice of polarizations, and at the optimal detuning is
4.0 GHz to the D1 line, we obtain a maximum Rabi coupling to spontaneous emission
ratio of ~ 271 x 220.

For our experiments, in order to resolve different hyperfine levels, a magnetic field
of 11.6 G is applied along z. The two Raman beams propagate in the & — Z plane at

an angle of £19° relative to ¢, as shown in Fig. 3-7a. Relative to the quantization axis
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Figure 3-6: (a) Magnetic field dependence of hyperfine levels obtained from Breit-
Rabi equation. (b) Magnetic field dependence of the suppression factor in Raman
coupling due to hyperfine mixing. The combinations shown are: |2)-|3) in black solid,
|1)-|2) (o_ light coupled to |1)) in green dotted, |1)-|2) (o4 light coupled to |1)) in
blue dashed, and |1)-|3) in red dot-dashed.

1, these beams have o, + o_ and 7 polarizations respectively. We tune the relative
frequency of the two Raman beams such that the two-photon resonance condition
only holds for the combination of o, and m, as shown in Fig. 3-7b. The momentum

transfer is along Z, and results in 1D spin-orbit coupling along this direction.
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Figure 3-7: Raman beam geometry and polarizations. (a) Geometry of the two
Raman Beams. (b) Schematic Diagram showing transitions and levels for Raman
coupling. Figures reproduced from [23].

3.3 Detecting Spin-Orbit Coupling

In previous experiments with spin-orbit coupling in BECs with Raman beams, the
modification of the dispersion relation was detected via measuring the momenta of
the BECs after time-of-flight (TOF) [85]. Concurrent with our work, another ex-
periment using fermionic “°K observed effects of spin-orbit coupling by measuring
a spin-dependent shift in the average momentum [142]. Unlike the case for BECs,
where a narrow range of momenta < () is populated, the signal for fermions is more
difficult to observe, as many momentum states are occupied in a Fermi gas. However,
if combined with momentum-resolved detection via TOF, a Fermi gas allows many
momenta to be probed simultaneously.

To verify that spin-orbit coupling and a transverse Zeeman field are present, we
first pulsed on the Raman beams for a duration corresponding to a 7-pulse, and sub-
sequently released the atoms after TOF. After a TOF time that is much longer than
the inverse trap frequency, we image the atoms. The density profile after TOF re-
veals directly the momentum distribution. Since the Raman beams are only resonant
for a narrow momentum class, one can observe selective transfer between ||, ¢) and
IT,q¢ + @), as shown in Fig. 3-8a. By integrating along the direction orthogonal to

the Raman transfer (z), one obtains integrated profiles as a function of momentum
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for both spin states. The location of the transfer is used to calibrate the magnitude
of the momentum transfer k. The integrated profiles can then be plotted in terms of
the quasi-momentum ¢, as shown in Fig. 3-8b. The ratio of the signal in the two spin
channels as a function of ¢ allows one to extract the spin S, = (ny —ny)/(ny + ny),
where ny (n)) is the integrated density for 1 (J) atoms. The spin composition S, can
then be re-expressed as a color map as a function of both the quasi-momentum ¢ and

some other quantity.
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Figure 3-8: Spin and momentum-resolved images and profiles. (a) Spin and
momentum-resolved images after a m-pulse is applied. The top (blue) and bottom
(red) are the |1) and ||) channels respectively. Atoms in a momentum class satisfying
the two-photon resonance condition are transferred from |1) to ||) while simultane-
ously receiving a momentum kick of —@Q. (b) Corresponding integrated spin and
momentum-resolved profiles as a function of quasi-momentum ¢/@). Figures repro-
duced from [23].

When the detuning A is varied, the momentum where the transfer occurs changes,
in accordance to Eq. (3.27). The shift in the momentum is given by Ak = —%.
A can be read off, and k is can be measured without calibration of the imaging
system, one can use the measured Ak versus A curve to determine Ex. From the

known mass m, one can thus obtain (), which also precisely calibrates the imaging
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Figure 3-9: Raman transfer as a function of the two-photon detuning . The Raman
strength is 7Q2gr = 0.035(5) Er, and the pulse time corresponds to that of a m-pulse.
Figures reproduced from [23].

When one suddenly turns on the Raman lasers, Rabi oscillations occur between
two states with opposite spin ¢ and offset by momentum (@), as shown in Fig. 3-10a.
To understand how the momentum-dependent Rabi oscillations arise, we recall that
for a two-level system coupled with Rabi frequency €2 and detuning A, the population

in the initially unoccupied state, say [1), is given by

0?2 o (1 [ 5
PT:mSIH <§ Q +6Ot>, (334)

where t is the elapsed time. In the present case, the Doppler shift gives rise to a
momentum-dependent detuning g = 2GEr/h. As a result, the oscillation frequency
and amplitude vary as a function of ¢g. The evolution of P; at different momentum is
shown in Fig. 3-10c. One can also identify the times ¢,, when P; is minimal, as shown

in Fig. 3-10b. From Eq. (3.34), these times are given by

2mn

fy= (3.35)
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Figure 3-10: Momentum-dependent Rabi oscillations at AQ2r = 0.78(2)Er and de-
tuning 6 = 0.25(1)Eg. (a) Spin and momentum-resolved profiles as a function of
time after spin-orbit coupling is turned on suddenly. Here, iz = 0.71(2)Eg and
ho = —0.25(1)Eg. (b) Profiles with contours indicating minima of |]). (c) In circles,
squares and diamonds are the [1) fraction of as a function of time for ¢ = 0.5, 0.25,
and 0.05 respectively. Figures reproduced from [23].

In addition to Rabi oscillations, another way to verify the coherence of the spin-
orbit coupling is to adiabatically turn on the coupling. Rather than ramping the
intensity adiabatically, we ramp the detuning, starting far from away from two-photon
resonance with any occupied momentum class. Depending on the sign of the initial
detuning, the system is adiabatically loaded into either the upper or lower spin-
orbit bands. Again, by measuring the spin and momentum after TOF, we observe

profiles consistent with an adiabatic ramp, as shown in Fig. 3-11. When the ramp is
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reversed, the spin composition is recovered, which shows that the process is reversible
and adiabatic. This also directly demonstrates that we can realize a single Fermi sea
with varying momentum-dependent spin composition, either in the upper or lower
spin-orbit bands. Although the upper band is metastable, the lower spin-orbit band
should be stable even in the presence of collisions. As discussed in Section 3.1.2,
a single-component interacting Fermi gas with effective p-wave interactions emerge
when underlying s-wave interactions are switched on for Fermions in the lower spin-

orbit band.

0.0 \,,7/ 0.0+
VA Y,
1E,; 0.2 4 % 0.2+
: \E/A \J/
= 0.4 = 04+
VA ¥
0.6 0.6
-1.0 0.0 1.0 20 -1.0 0.0 1.0 2.0
q/Q q/Q
(a) (b)

Figure 3-11: Adiabatic loading of spin-orbit bands at AQ2r = 0.53(5)Fg. (a) Starting
with detuning § = —8.5Q, d is swept linearly at a rate of |3 = 0.27(5)Q% to § = 0,
and swept back. The atoms remain in the upper spin-orbit band at all times. A
diagram indicating the population along in the spin-orbit bands is shown on the right.
(b) Starting with detuning A = 8.5, 4 is swept linearly at a rate of |§] = 0.27(5)0%
towards 0 = 0, and swept back. The atoms are loaded into the lower spin-orbit band.
A diagram indicating the population along in the spin-orbit bands is shown on the
right. Figures reproduced from [23].

3.3.1 Spin-Injection Spectroscopy

Although the measurements in the previous section verify that spin-orbit coupling is
present, it does not directly measure the dispersion relation of the spin-orbit coupled
bands. To directly detect the modified spinful dispersion, we implemented a new

technique that we call spin-injection spectroscopy. Spin-injection spectroscopy is
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similar to spin-resolved inverse ARPES, where free electrons are injected into a sample
with specific momenta and energies. In our case, we utilize two additional hyperfine
states that are not coupled by Raman beams. Specifically, we use states |1) and |4)
which we denote as |1) , and |]) ;. Via selection rules, RF transitions only couple |1) 5
to [1), and ||), to |]). We use either |1), or |]), as reservoir states, and inject atoms
from these reservoirs into the spin-orbit coupled [1)-||) system. By spin-selectively
imaging |1) and |{), one can determine the admixture of | 1) and | |) in the spin-orbit

coupled states.

Me

Figure 3-12: Spin-Injection Spectroscopy. The spin-orbit coupled system involves
states |1) and |]) shown in blue and red respectively. In spin-injection spectroscopy,
we make use of two reservoir states |1), and ||)p, indicated by the gray parabolas
shown above and below the spin-orbit coupled states. The reservoir states do not
experience spin-orbit coupling. Their dispersion relation is that of free particles.
Using RF pulses, selection rules allow for two transitions, 1), — [1) and |]), —
|[4). Due to the long wavelength of RF radiation, the RF pulses do not impart
any momentum. The two gray parabolas corresponding to the energy bands of the
reservoir states are shifted in quasi-momentum by the spin-orbit momentum transfer
Q. Figure reproduced from [23].

In detail, the procedure for spin-injection spectroscopy proceeds as follows.

1) Fermionic °Li atoms are initially prepared in [1), (|)p)-

2) An RF pulse with frequency near the [1), — |1) ([{)z — [})) transition is

applied. This injects atoms into the spin-orbit coupled system, which is formed
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by Raman-coupling the bare states [1) and |]).

3) The Raman beams and the dipole trapping beams are switched off, and the

atoms are allowed to expand ballistically for some time.

4) Atoms in each spin state |[1) and |]) are imaged separately. This allows one
to measure the arrivals in each spin channel as a function of the RF frequency.
Furthermore, the ballistic expansion allows one to determine the momentum dis-

tribution of the atoms that are successfully transferred.

This procedure is depicted in Fig. 3-12. A total of four spectra are obtained. Two
spectra, corresponding to the separately imaged [1) and ||) channels, are obtained
with atoms prepared initially in the reservoir state |1),. The other two are obtained
with atoms starting in the other reservoir state ||),. An example of these four
spectra is shown in Fig. 3-14, where the presence of a spin-orbit gap in the bare
spectra is already directly observable. In principle, the dispersion relation and the
spin composition of the spin-orbit coupled bands are contained in these spectra. In
order to reconstruct the dispersion, we must add back the free particle dispersion of
the reservoir states |1), and ||),. The ratio of the arrivals in the two channels [7)
and |]) for each quasi-momentum @ directly reveals the spin composition of the two
spin-orbit coupled bands. It is interesting to note the arrivals in the |1) channel when
starting with atoms in ||), are only present because of spin-orbit coupling.

Combining the four spectra along with the free particle dispersion of the reservoir
states, we are thus able to extract the spin-resolved dispersion relations, as shown in
Fig 3-14. The expected spinful dispersion and the spin-orbit gap are directly observed.
We also see how the spin-orbit gap increases with the Raman coupling, and the merg-
ing of the two minima in the lower spin-orbit band into a single minimum. A unique
feature of spin-injection spectroscopy is that the spin-orbit system is initially empty,
and specific states are only briefly populated after injection with the spectroscopy
pulse. This allows for a clean background, as only arrivals are imaged. Further-
more, the spin-orbit states that can be accessed are thus only limited by the initial

momentum distribution of the reservoir states. This illustrates one of the practical
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Figure 3-13: Bare spectra from spin-injection spectroscopy of spin-orbit coupled
fermions. Here, Av is the detuning in the RF frequency from the bare transition. (a)
Shown are the spectra in the two channels |]) (top) and [1) (bottom), with atoms
prepared in reservoir state |1) 5. (b) Same as (a), except atoms are initially prepared
in |}) 5. Figures reproduced from [23].

advantages of the Fermi gas compared to Bose-Einstein condensates. Rather than
occupying a single momentum, the Fermi gas occupies a large range of momentum

with a width ~ 2|kg|.
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Figure 3-14: Spin-orbit bands reconstructed from spin-injection spectroscopy spectra.
Shown from left to right are cases corresponding to Qz = 0,0.43(5) and 0.9(1),
respectively. The opening of the spin-orbit gap with increasing Qp is seen. For the
rightmost case, the merging of the two minima in the lower spin-orbit gap is evident.
Figures reproduced from [23].
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3.3.2 Measuring Spinful Bands in an RF-Raman Lattice

To illustrate the technique of spin-injection spectroscopy, we engineered another situ-
ation where dispersions are spinful. By applying an additional RF drive between [1)
and | |), we created a novel spin-dependent lattice. To see how the lattice structure
arises, we consider an atom in state | |,q). The Raman coupling couples | |, ¢q) to
| 1,9 + k). The RF drive couples | T,q + k) back to | |,q + k), with no imparted
momentum. This produces a lattice Hamiltonian similar to Eq. (2.18), where each

entry is a 2 x 2 matrix. Specifically,
-y,
q

1 2.0
<<§—§+n> 1+%&2> S

(7A—5n,m+1 + 7A—T(Sn,m—l )

HqEER

+

o | O

(3.36)

where (n,m) denotes a 2 x 2 block, Q= hQr/ERg, Qrp = hQrr/ER, and 7 is given
by

7= . (3.37)

In this form, it is clear that one needs Qzp and Q to open up all gaps at the zone
edge £k/2. The difference from a simple lattice is shown schematically in Fig. 3-15.

To understand the structure of the bands, we first start with the case where the
Raman coupling is off but the RF coupling is on, i.e. Q@ =0 and Qgp # 0. The RF
coupling splits the | ) and | |) states by exactly AQrp. In the reduced zone scheme,
we have two pairs of free-particle bands for each spin, with a vanishing bandgap at the
zone edges at +@)/2, and no avoided crossings. The two pairs of free-particle bands
are not coupled, as shown in Fig. 3-16c. The spin composition of the two bands are
equal and orthogonal superpositions of | 1) and | J). The spin state and the motional
states are decoupled at this point.

Next, we switch on the Raman coupling. The four band crossings near Eg/4 all
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Figure 3-15: Simple Lattice Versus Raman Lattice. (a) Graphical representation
of the momentum space structure of a normal lattice. States |¢+ n@) are cou-
pled by the lattice with amplitude /4, where V4 is the depth of the lattice. (b)
Graphical representation of the momentum space structure of the Raman-RF lat-
tice. Each momentum state has an additional spin index o =1, ]. States ||, ¢+ nQ)
and |1, ¢ + (n+ 1)Q) are coupled by the Raman beams, while states ||, q 4+ n@Q) and
11, ¢ + nQ) are coupled by the RF drive.

become avoided crossings. Although the Raman can only couple a right-moving |
state with a left-moving 1 state, the RF coupling allows all states to have admixtures

of both 1 and |, and hence all states that are at the same quasi-momentum can

couple.

Explicitly, when Qgr = 0, there are four states |o, q), i = 1,2, 3,4, where ¢ is the

quasi-momentum. Initially, these are quadruply degenerate at F = Eg/4, and given
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Figure 3-16: Band structure of Raman-RF lattice. The color indicates the spin
composition (S,), with blue and red corresponding to (S,) = 1 and (S5,) = —1
respectively. (a) Band structure in the absence of Raman and RF coupling. We have
chosen the spin-dependent gauge such that quasi-momentum ¢ = 0 corresponds to
real momentum of k = ¢ + (n + 1)Q/2 for 1 and | atoms respectively. Each band
is doubly degenerate with the two spin states. The point at £ = 0.25Fr at ¢ = 0
is quadruply degenerate. (b) Shown is the case with only Raman coupling, where
Qr = 0.10. This is simply the reduced zone representation of the same Hamiltonian
shown in Fig. 3-2. (c) Shown is the case with only RF coupling, where Qpp = 0.25.
This spits the two degenerate bands for each spin shown in (a) by AQQgp. (d) Zoomed-
in view of the initially quadruply degenerate point when Qg = 0.1. In this case, two
of the bands are coupled, and the degeneracy is partially split. This is the only gap
that opens up at all energies and all quasi-momentum, and corresponds to the two-
photon resonance of the Raman beams. (e) Zoomed-in view of the case in (b), where
only RF coupling is present, and Qgp = 0.25. The states are labeled Eq. (3.39) are
labeled. The quadruple degeneracy is lifted, and forms four pairs of degeneracies, two
at ¢ = 0, and two at ¢ = +x. (f) When the Raman coupling is switched on, all the
band crossings shown in (e) become avoided crossings. Shown in dashed is are the
bands when 2z = 0. In general, the case of Qr # 0 and Qrr # 0, all band crossings
become gapped.
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in terms of free space momentum states as

1,4 = 0) = [1,+Q/2)
2,4 = 0) = [, +Q/2)
|3, ¢ = 0) = [T, -Q/2)
|, =0) = [, —Q/2) (3.38)

In this case, the Raman coupling Qg can only couple |ay) with |aq), as shown in
Fig. 3-16d. However, when at small Qrpr # 0, Qgrr < Egr/h, and Qg = 0, the states

lai;, ¢) become

a1, q) = 7(|T7q+Q/2>+|¢,q+Q/2>)
g, q) = 7(|¢,q+Q/2> T4+ Q/2))
s, q) = (IT,q—Q/2>+|¢,q—Q/2>)

SI

oy, q) = E(IWJ-Q/% —1q—Q/2)). (3.39)

The quadruple degeneracy now splits into four pairs of band crossings, as shown in
Fig. 3-16e. Two occur at ¢ = 0 between |aq,q) and |as, ¢), and two occur between
lag, ¢) and |ay, g). The latter two degeneracies occur at ¢ = +x, where k = QppQ
and are between |aq,q) and |ay, q), and between |as,q) and |ag,q). By inspection,
Raman coupling leads to couplings between |a1) and |as), with |as) and |ay). Thus

all four crossings become avoided when Qp is switched on, as shown in Fig. 3-16f.

We again use spin-injection spectroscopy to directly measure the spinful bands.
Just as before, the reservoir states |1), and |]), do not experience any Raman or
RF coupling. Nevertheless, we can still analyze the free particle Hamiltonian in the
reduced zone scheme. Analogous to the case in the previous section, we obtain four
spectra: two channels starting from two reservoirs. By identifying different features
in the spectra, we can reconstruct both the dispersion and spin distribution of the

spinful lattice system. An example of how this is carried out is shown in Fig. 3-17.
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Figure 3-17: Spin-injection spectroscopy on a Raman-RF lattice. Shown on the
left are the Raman-RF bandstructure (top), and the bandstructure (bottom) of the
reservoir states. The experimental bare spectra corresponding to starting in reservoir
state ||), is shown in panels (a) and (c) on the right. The corresponding theoretical
spectra is shown in panels (b) and (d). The transitions 1 to 4, and gaps A, Ay
and Ajz are identified on the theoretical spectra. By selecting certain features, the
dispersions and spin compositions of various bands can be reconstructed.

There is however, one difference from the previous case where spin-injection spec-
troscopy was applied. Since there is a lattice structure, one can in principle couple to
an infinite number of bands, as atoms can exchange momentum with the RF-Raman
lattice. Another consequence is that when the RF drive and the Raman beams are
switched off, the Bloch states are projected back onto free particles states. One can
thus read off the projection of a state in band n with quasi-momentum ¢ onto free-
space momentum states with momentum ¢+ nk. Furthermore, each momentum state
qg+nk also has a spin composition. While the final measurement is in one specific spin
basis, which we label here as o, basis, one can in principle measure the orthogonal o,
and o, components by applying the appropriate RF pulse before measurement. With

just the spin composition in the o, basis, we can obtain the average spin (S,). Since
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the state is normalized to the total density, this immediately gives the magnitude of
the orthogonal spin component. Without loss of generality, we define this component

to be along o,. The measurement of (S,) thus also gives [(S.)|.
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Figure 3-18: Extracting spin composition for the Raman-RF Lattice, with Qz = 0.93
and Qpp = 0.28. (a) Reconstructed spin composition and dispersion for the lowest
four bands, for Qx and Qpp. (b,d) Extracted spin composition of the lowest band in
the basis of free space momentum states labeled by k.. Here, a spin-dependent gauge
is applied such that the k, is shifted from the laboratory frame momentum by +@Q/2,
for T and | atoms respectively. (c) The extracted spin as a function of momentum
k.. Figures reproduced from [23].

3.4 Some Concluding Thoughts

We have shown directly in our experiment that Raman beams can be used to realize
spin-orbit coupling with a Zeeman field in ultracold fermions. We have shown di-
rectly the presence of a spin-orbit gap, and the adiabatic loading of spin-orbit bands,
creating a single-component Fermi sea that supports interactions. Nevertheless, the

interesting case of topological superconductors and Majorana excitations requires
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many-body pairing of fermions, which occur at temperatures much lower than Tp.
In SLi, fermionic superfluids have been created with the use of Feshbach resonances,
which significantly enhance the superfluid transition temperature to experimentally
accessible values. The Feshbach resonances, however, occur at high magnetic fields.
Here, the relevant states have predominantly electron spin projection of mg = —1/2.
As discussed in Section 3.2.2, this highly suppresses the two-photon Raman coupling.
For example, for the |2)-|3) mixture at the Feshbach resonance at 812 G, the maximum
Rabi coupling to spontaneous emission ratio is reduced from the zero field value by a
factor of 17, to 27 x 13. In order to have a large enough spin-orbit gap to occupy only
the lowest band, one requires g ~ Er. For a superfluid, one requires T//Tp ~ 0.2.
Assuming that each scattering event adds an amount of energy Er ~ Ep, the lifetime
of a superfluid is then ~ 10x, where tp = h/FEF is the Fermi time. In experimental
timescales, this is on the order of milliseconds, sufficient for thermalization over short
distances, but insufficient for full thermalization for typical samples.

Nevertheless, in addition to coupling two hyperfine states with Raman lasers, there
are other methods to generate spin-orbit coupling that do not suffer from the same
limitations. If one still wished to use Raman beams, there are some improvements that
can be made. For example, using shaped laser beams, one can have spin-orbit coupling
present only in a small region. As long as the rest of the sample is large enough, and
the heating rate is lower than the time-scale required for pairs to move into the spin-
orbit coupled region, the rest of the system can act as a reservoir. Provided that
thermalization occurs quickly, such that heat generated due to the Raman beams can
be dissipated into the reservoir, one might be able to momentarily combine fermion
pairing and spin-orbit coupling. By reducing the momentum transfer in the Raman
beams, and lowering the density of the Fermi gas, the two-photon coupling €2 that is
required is also reduced. Recent advances in shaping the optical beams can potentially

allow these ideas to be implemented.
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Chapter 4

A Quantum (as Microscope for

Fermionic 'K

The advent of degenerate atomic gases has allowed for the quantum simulation of
many-body systems in a pristine and well-controlled environment. In recent years,
quantum gas microscopes, which are characterized by their ability to measure occupa-
tions of individual lattice sites, have emerged as new tools to probe and manipulate
ultracold atoms trapped in 2D optical lattices. The site-resolving ability not only
offers unprecedented access to a large number of degrees of freedom that is on the
order of the number of sites IV, it also allows for direct probing of spatial correla-
tions [35]. Furthermore, the high-resolution imaging system can be used in reverse to
project arbitrary optical potentials, providing a new level of control for quantum gas
experiments.

The first quantum gas microscopes, realized in 2009, were used to image bosonic
gases of 8"Rb [10, 128]. The newfound ability of quantum gas microscopy enabled
novel experiments on bosons in the Hubbard regime, from studies of the superfluid
to Mott-insulator transition to antiferromagnetic spin chains [8, 34, 129]. Using these
microscopes in reverse, site-resolved control was also realized, leading to new methods
of preparing and probing many-body states [145]. These capabilities led to studies
on bosonic systems ranging from quantum walks to measurement of entanglement

entropy in many-body systems via interferometry of many-body states [112, 64].
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As discussed in Section 2.3, fermionic atoms trapped in an optical lattice allow
one to simulate an equally interesting many-body system that has direct connec-
tions to high-T, cuprates [36, 83]. The possibility to achieve what was made possible
with bosonic microscopes led to many efforts to realize analogous microscopes for
fermionic atoms. Nevertheless, for technical reasons, quantum gas microscopy of
fermions turned out to be more difficult, and the first fermionic quantum gas micro-
scopes were not realized until 2015 [51, 22, 106], one of which is described here. For
alkali atoms, the two stable fermionic isotopes that can be used are 5Li and *°K, both
of which have their own challenges. We have chosen to work with the latter.

In this chapter, we describe our experimental apparatus for quantum gas mi-
crosocpy of fermionic “°K. Some of the setup, specifically the vacuum chamber and
the coils for magnetic fields, have been described in detail in [41, 116], and will only
be described briefly here. Additional components, such as the optical lattice, and

optical trapping and transport beams, are described in detail here.

4.1 Producing Ultracold “K

In order to produce ultracold K, we employ a single vacuum chamber design and
use two species of atoms, fermionic *°K and bosonic #*Na [116]. First, we load a
dark-spot magneto-optical trap (MOT) of »*Na atoms in 4s from a ?*Na oven via a
Zeeman slower. As shown in Fig. 4-1, the center of the MOT coils are displaced along
Z by 12mm. After loading of the MOT, the MOT beams are switched off and a 4.2 G
magnetic field along # is switched on. We then optically pump the atoms into the
magnetically trappable |F' = 2, mp = 2) state using a ~ 100 us pulse of o light. The
current in the MOT coils is then rapidly switched on in order to magnetically catch
the optically-pumped 23Na atoms. The relevant coils used are shown in Fig. 4-4.
For sympathetic cooling of 4K, it is important to use stable combinations of
hyperfine states. In s-wave collisions, the total My of a pair of atoms is conserved. By
considering all possible magnetically trapped configurations, one finds that the only

stable mixture is *Na in |2,2) and ‘'K in [9/2,9/2). Due to the inverted hyperfine
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Figure 4-1: Top view of vacuum chamber. Gravity is along —Z. The center of the
chamber is marked by the black circle. The center of the quadrupole magnetic trap,
and the center of the high-resolution imaging axis is marked by the cross. The MOT
beams are along the z’ and 3 axes, indicated by the dot-dashed red lines. The slower
axis and slowing beam direction is indicated by the blue dotted line. The °K 2D
MOT is attached to the chamber along 2", on the positive = side. The **Na dark-spot
F =1 MOT repumping beam also propagates along z”. The direction of the optical
pumping beam is indicated by the solid gray arrow. It intersects the MOT, which is
displaced along & by ~ 12mm and ~ 1 mm along —y. The x and y optical lattices
enter the chamber as indicated by the black arrows along & and —g. The black arrows
indicate the directions of “bouncing” imaging paths along z and —g.

structure in “°K, the magnetically trappable mixture of |1, —1) and |7/2,—-7/2) is
unstable as it can decay to |1, —1) and |9/2,—7/2) or |1,0) and |9/2,—9/2).

In order to ensure *Na atoms are in the |2, 2) state before loading “°K, we perform
a cleanup procedure [105, 148]. The gradient of the magnetic trap is lowered such

that residual |2, 1) atoms are spilled by gravity while |2,2) atoms remain due to their
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Figure 4-2: Side view along Z of various beams. The high-resolution imaging axis is
shown in gray. The intersection of the vertical center of the chamber with the high-
resolution imaging axis is marked by the cross, and is 9.5 mm below the substrate.
The dashed red arrow indicates the direction of the “bouncing” imaging beam along
—1, and also the direction of the incoming y lattice beam. The dot-dashed blue
arrow indicates the direction of the y arm of the movable cross dipole trap. Two
cases are shown: 1) when it is aligned to the center of the substrate; 2) when it is
aligned to intersect the high-resolution imaging axis 2 mm below the substrate. The
black squares indicate the location of the in-vacuum RF antenna. The green solid
arrows indicate the direction of the optical plug. The upper arrow corresponds to the
case when the magnetic trap is ~ 2mm below the substrate, while the lower arrow
corresponds to the case when the magnetic trap is at the center of the chamber. The
first scenario applies to Chapter 5, while the second applies to Chapter 6.

larger magnetic moment. Subsequently, the “°K MOT beams are switched on, and
40K atoms are loaded from a 2D MOT. In order to increase the flux of “°K atoms,
we rely on light-induced atomic desorption [42]. We illuminate the 2D MOT glass
cell with a 1 W beam of 455 nm light collimated to a diameter of 25 mm. This light
originates from a THORLABS M455D2 LED, and releases atoms adsorbed to the

glass surface [4, 75]. The 455 nm light is on only during the loading of the “°K MOT.

After the °K MOT is loaded in ~ 1s, the current in the MOT coils is again
switched off, and both ?’Na and %K atoms are released. A magnetic field of 4.2 G
along 7 is applied. We wait 400 us for the fields to ramp up, then apply a 100 us
pulse of o0, mp-pumping light. During this time, the MOT repumper beams are left
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Figure 4-3: Side view along ¢y of the solid immersion lens and various beams. The
intersection of the vertical center of the chamber and the high-resolution imaging axis
is marked by the cross. The solid gray arrow indicates the direction of the “bouncing”
imaging beam along z, and also the direction of the incoming x lattice beam. The
dashed red arrow indicates the direction of the 5-degree beam. The dot-dashed blue
arrow indicates the direction of the x arm of the movable cross dipole trap. Two
cases are shown: 1) when the beam is aligned to the center of the substrate; 2) when
the beam is aligned to intersect the high-resolution imaging axis at 2mm below the
substrate. The green solid arrow indicates the direction of the accordion beam. The
green shaded area indicates the range of angles (~ 1.0° to ~ 5.0°) achievable with
the accordion beam.

on. A quadrupole magnetic trap formed by the MOT coils is then rapidly switched

on to catch both ?*Na and *°K atoms.

The atoms are then magnetically transported into the center high-resolution imag-
ing axis by ramping down the current in the MOT coils while simultaneously ramping
up the current in the curvature coils. The curvature coils are run in anti-Helmholtz
configuration to form a quadrupole magnetic trap. The center of the curvature coils
is located 9.5 mm below the surface of the substrate on the top window, as shown
in Fig. 4-2. For the results in Chapter 5, the quadrupole trap is centered vertically
at the center of the chamber. For the results in Chapter 6, the quadrupole trap was
moved 7.5mm upwards towards the substrate. This will be discussed in detail in

Section 6.1.1. The following description for the optical plug applies to both configu-
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Figure 4-4: Coils used for generating magnetic fields. Shown is a view of the three
relevant pairs of coils used. Shown in green are the MOT coils, which are displaced
12mm along 2 relative to the high-resolution imaging axis. Shown in red are the
curvature coils, which are run in anti-Helmholtz configuration and used to generate a
quadrupole field for the plugged quadrupole trap and for “slicing.” Concentric to the
curvature coils are a pair of Feshbach coils, shown in blue, which are run in Helmholtz
configuration and are used to generate a uniform bias field. In combination with the
curvature coils, they can be used to move the center of the quadrupole trap.

rations.

In order to suppress Majorana losses, an optical plug of 532 nm light, focused to
a waist of 30 um, propagates along 3’ and intersects the center of the quadrupole
magnetic trap. The “°K atoms are sympathetically cooled in the plugged quadrupole
trap by forced evaporation of **Na carried out using the |2,2) — |1,1) microwave
transition. During evaporation, hot atoms are preferentially transferred into the
magnetically untrapped |1, 1) state. At the end of the evaporation, all 2*Na atoms
are removed, and ~ 105 4°K atoms at 10 uK remain.

Details of the 2*Na laser system and °K laser system are described in Appendix B.

4.2 The High-Resolution Imaging System

Central to any quantum gas microscope is a high-resolution imaging system. In our
experiment, we use an integrated solid immersion lens combined with a high-resolution

objective. The integrated solid immersion lens is formed from three parts that are
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optically contacted to each other. We optically contacted a spherical cap of fused silica
to the outside of a vacuum window, and a super-polished substrate on the vacuum
side [41], as shown in Fig. 4-5a. In a solid immersion lens, light originating from a
spot close to the surface and on the imaging axis experiences minimal aberrations,
since light rays at the air-glass interface are minimally refracted. This allows us to
use a standard long working distance microscope objective. An important advantage
of the solid immersion lens is the increased effective numerical aperture (NA). Due
to refraction between the substrate and vacuum, the NA is increased by the ratio
of the refractive indices, as shown in Fig. 4-5b. The enhanced NA has two benefits.
First, the diffraction limit d, given by d = 1.22)\/(2NA), is lowered; second, the light

collection efficiency is increased.

In our system, we use an EDMUND OpTics 20X PLAN HR INFINITY COR-
RECTED OBJECTIVE that has an NA of 0.60, an effective focal length of 10 mm, and
a working distance of 13 mm. The solid immersion lens increases the effective NA to
0.87, which gives a diffraction limit of ~ 500 nm, and a light collection efficiency of
0.25. For fine alignment and focusing, the objective is mounted on a 3-axis transla-
tion stage with NEWFOCUS PICOMOTOR piezo actuators, directly mounted onto the

vacuum chamber.

For single-site imaging, another parameter to consider is the location of the atoms.
If one’s goal is to reduce imaging aberrations, the optimal location is directly at the
surface of the substrate, since aberrations increase with the distance from the surface.
However, one must consider the effect of van der Waals forces, which arise from atoms
adsorbed onto the substrate. We chose to trap atoms ~ 7 uym away, as a compromise

between reducing these forces and minimizing aberrations [88, 96].
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Figure 4-5: High-resolution imaging system. The high-resolution imaging system
consists of a solid immersion lens that is integrated with the vacuum window, along
with a high-NA (NA=0.6) EDMUND OpTICS 20X PLAN HR INFINITY CORRECTED
OBJECTIVE. Specifically, the solid immersion lens, consisting of a 9 mm radius spher-
ical cap, bmm thick fused silica vacuum window, and a 1.8 mm thick super-polished
substrate, is shown. (a) Shown in dashed red lines are light rays originating from the
surface of the super-polished substrate, at the center of the imaging axis. Light rays
originating from the center propagate orthogonal to the air-glass interface of the solid
immersion lens, thus avoiding imaging aberrations. (b) Shown is the case where the
light still originates from a point on the imaging axis, but below the surface. For our
experiments, the atoms are situated 7 um below the surface. In addition to reducing
abberations, the solid immersion lens increases the effective NA. Since the atoms are
displaced from the surface, the refraction at the vacuum-substrate interface increases
the collection angle.
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4.3 The 2D Square Optical Lattice

The other ingredient for a quantum gas microscope is a 2D optical lattice. In our
experiment, the optical lattices are formed from 1064 nm light, derived from NUFERN
fiber amplifiers seeded by a COHERENT MEPHISTO laser. The output of the fiber
amplifiers are delivered via single-mode fibers to the experiment. The detailed setup

for generating light is contained in Appendix B.4.

There are three lattice beams. We first describe the two beams that form a lattice
in the z-y plane. 1064 nm light for the two beams are delivered to the experiment via
two single-mode photonic crystal fibers (NKT PHOTONICS LMA-25), which have
a 25 um core. These fibers are connectorized by ALPHANOV, and are terminated
with short fused silica endcaps, which increase the damage threshold due to a larger
beam size at the tip. The large mode area of the fiber also reduces the problem
of spontaneous brillouin scattering (SBS) that typically occurs at high powers. The
effect is negligible for the highest powers that we are able to generate. The two lattice
beams enter the vacuum chamber along # and —y, and are angled upwards (along
+2) at an angle of 10.8° relative to the z-y plane (see Fig. 4-1, Fig. 4-2 and Fig. 4-
3). They reflect off the substrate, which is custom-coated to reflect 1064 nm light at
0° incidence (reflection ~ 0.998) and 10° incidence (reflection of 0.9995 and 0.973)
while transmitting light (transmission > 0.95) from 613nm to 799 nm from 0° up to
53°. The two in-plane lattice beams are then retro-reflected (see Fig. 4-6), forming a
square lattice with a lattice spacing of 541 nm in the z-y plane, and a vertical lattice
with 3 ym spacing. Due to constructive interference with the reflections from the
retro-reflection mirror and the substrate, we obtain an enhancement in lattice depth
by a factor of 16 compared to the depth of a single beam of the same power. This is
helpful for single-site imaging where deep lattices are required. To further reduce the
power requirement on the lattice beams, the x and y beams are shaped cylindrically

with beam waists of 135 um along the horizontal and 40 um along the vertical axis.

As we will describe in Section 5.3, strong confinement along all directions is nec-

essary for single-site imaging. In order to increase the confinement in the vertical
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Figure 4-6: Side view of lattice, imaging and Raman cooling beams. (a) Side view of
the lattice beams and the bouncing imaging beams along & or —y. The lattice beam
path is indicated by the dashed red arrow. The “bouncing” imaging beam, indicated
by the thick green arrow is transmitted through the retro mirror. (b) Side view of
lattice and Raman cooling beams. For the case where one is looking down , the thick
blue arrow indicates the path of the Raman beam along . The dashed red arrow
indicates the path of the y lattice. For the case of looking down —g, the thick blue
arrow indicates the path of the Raman beam along —2, and also the optical pumping
beam used for Raman imaging. The Raman beams and the optical pumping beam
are partially transmitted through the lattice retro-reflection mirror.

direction, an additional 1064 nm beam along % is retro-reflected off the substrate to
form a 532nm spacing vertical lattice. This beam has a waist of 60 ym, and is de-

livered to the experiment with a THORLABS PM-980 fiber. Although this limits the
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power to ~ 5W due to SBS in the fiber, it is sufficient to produce a lattice depth
of 190 uK, enough for single-site imaging. For the vertical beam, the lattice depth is
enhanced by a factor of 4 compared to the depth of a single beam.

4.4 Single-Site Imaging Beams

In this section, we describe the beams required to perform single-site imaging, which
will be discussed in detail in Section 5.4. Three beams are used: two Raman beams
and an optical pumping beam. The Raman beams enter the chamber opposite to
the lattice beams, along —% and y. Similar to the lattice beams, they are angled
slightly upwards at an angle of 10.8° relative to the x-y plane and are reflected off the
substrate. The Raman beams are sent through the lattice retro-reflection mirrors,
which are highly reflective for 1064 nm light, but transmit the Raman beams, which
are at 767nm, with ~ 0.8 efficiency. The polarizations of the Raman beams are
parallel to the surface of the substrate. The optical pumping beam is combined
with the x Raman beam on the experiment table with a non-polarizing beamsplitter,
and follows the same path. Its polarization is optimized for optical pumping. The
details of the Raman light source and optical pumping light source are described in

Appendix B.3.

4.5 Additional Optical Beams for Trapping and
Transport

In order to produce degenerate samples at the imaging location ~ 7 um below the
substrate, several additional laser beams are necessary for trapping and transport of

the atoms. These are described in the following sections.
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Figure 4-7: Trapping potential formed by the 5-degree beam. Shown is the case when
the vertical waist of the beam is 35 um. (a) Side view of the trapping potential formed
by the 5-degree beam, viewed along y. The reflection from the substrate interferes
with the incoming beam to form a vertical lattice along 2. The trapping depth is
indicated by the brightness. (b) A cut of the trapping potential along the z-axis.

4.5.1 The 5-Degree Beam

In order to trap and evaporate atoms at the imaging location ~ 7pm from the
substrate, we added an additional 1064 nm trapping beam that propagates along  at
an angle of 5.8° relative to the x-y plane. This beam is also reflected off the substrate,
and forms a vertical lattice with a larger spacing of ~ 5 um, as shown in Fig. 4-7. In
this trap, the atoms form pancake-like layers. By lowering the power of this beam,
the layers can be evaporatively cooled. The light source for this beam is the same as

for the z lattice beam, and is described in detail in Appendix B.4.
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4.5.2 The Accordion Beam

While the 5-degree beam was sufficient to produce dilute samples near the substrate
needed for implementing single-site imaging, it was not able to produce quantum
degenerate samples on its own. The main limitation was the transfer efficiency into the
5-degree beam. In an improved scheme to produce cold samples near the substrate,
which is discussed in detail in Section 6.1.2, the transfer efficiency was improved. This

required three additional 1064 nm beams, and a 830 nm dimple beam.

The first of these is the “accordion” lattice beam, which forms a vertical lattice
along Z whose spacing can be dynamically tuned [61, 13]. This beam propagates
along — and is focused to a waist of 72 um at the center of the substrate. Similar
to the 5-degree beam, the reflection from the substrate interferes with the incoming
light to form a vertical lattice. In order to tune the lattice spacing, the center of the
substrate is imaged onto a galvo mirror (THORLABS GV S311), as shown in Fig. 4-8.
By tuning the angle of the galvo mirror, the angle of the beam at the substrate is
tuned, while its position remains unchanged. The lattice spacing, which is determined
by the angle, can thus be dynamically adjusted. To compensate for residual motion
due to imperfect imaging of the galvo onto the substrate, an additional galvo with a
3mm thick fused silica plate is placed in the beam path. By adjusting the angle of
the glass plate, the position of the beam at the substrate can be steered. The light
for the accordion lattice originates from the same source as that for the z lattice, and

is described in Appendix B.4.

Figure 4-8: The “accordion” beam. The atoms are at I;; focal lengths are in units of
mm. The galvo mirror is placed in the image plane [5. An additional galvo with a
3mm glass plate is placed ~ 30 mm after the galvo mirror.
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4.5.3 The Movable Crossed Optical Dipole Trap

The accordion lattice allows for loading atoms at a lattice spacing that is twice as
large as that of the 5-degree beam, and further way from the surface. However, this
does not address the issue of efficient transport of atoms into the accordion lattice.
In order to transport atoms from the magnetic trap, centered ~ 2mm below the
substrate, to the accordion lattice, located within ~ 100 um of the substrate, two more
transport beams were needed. These two beams form a crossed optical dipole trap,
and their intersection point can be tuned anywhere from ~ 2 mm below the substrate
to directly at the center of the substrate, while maintaining the same incident angle.
The positions of these beams are controlled by two INTRAACTION DTD-274HA6
shear mode acousto-optic deflectors (AOD), which have high diffraction efficiency
over a large range of deflection angles. The AODs are placed in the Fourier plane,
such that the beam position can be steered while maintaining the same incident angle
at the atoms (See Fig. 4-9a and Fig. 4-9b). The beam paths of these two beams are
shown in Fig. 4-2 and Fig. 4-3. One beam propagates along —% with an angle of
1.2°, while the other beam propagates along ¢ at an angle of 5.4°. The latter angle
is chosen to avoid hitting the in-vacuum antenna, which at full power can lead to an
increased vacuum pressure of ~ 1078 Torr, ~ 1000 x higher than required for vacuum
lifetimes of ~ 100s. The former angle was chosen to have good overlap with the
accordion beam while minimizing the number of vertical lattice sites due to reflection
from the substrate. To achieve sufficient trap depths, the x ODT beam is focused to
a beam waist of 40 um while the y ODT beam is elliptical with beam waists of 40 ym
in the vertical and 90 um in the horizontal. The light source of these two beams is
the same as that for the y lattice. A detailed description of the setup is described in
Appendix B.4.

4.5.4 The Dimple Beam

The fourth beam used to produce degenerate samples near the substrate is a small

“dimple” beam. This beam is used to provide additional radial confinement in the z-y
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Figure 4-9: z and y crossed ODT beams. The atoms are at I;; focal lengths are in
units of mm. (a) x ODT beam path. The AOD is placed in the Fourier plane F5.
This beam is combined with the accordion lattice beam at a polarizing beamsplitter
placed near Fy. (b) y ODT beam path. The AOD is placed in the Fourier plane F}.
The beam is pre-shaped to be elliptical before reaching Fj.

plane. This helps during vertical transport in the accordion lattice since the accordion
beam provides little confinement along z, as will be discussed in Section 6.1.2. The
main purpose of the dimple beam, however, is to provide confinement in the z-y plane
for the final stage of evaporation in the 5-degree beam. For efficient evaporation to
occur, atoms must be able to thermalize. The thermalization time is determined by
the density n and the scattering cross-section o. Since our experiments are conducted
far from any Feshbach resonances, the cross-section o is fixed by the background scat-
tering length. One must therefore have sufficient density to achieve a thermalization
rate on a reasonable timescale. Although one can increase the trap frequency by
increasing beam power, atoms must still be able to leave the trap during evaporation.
The increased trap depth due to the increased power must then be counteracted. The
simplest method is to use a magnetic gradient. However, due to the differential mag-
netic moment of the different hyperfine states of 4K, large gradients in deep traps
can spatially separate the two spin components, again reducing thermalization. The

other solution is to decrease the trap size, which allows one to increase the density
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without the need of higher optical powers.

The dimple beam is formed from incoherent light from a super-luminescent diode
(SLD) at 830 nm (THORLABS SLD830S), which is amplified by a tapered amplifier.
Incoherent light is used to avoid formation of interference fringes that arise from
reflections from optical elements in the beam path. The light is sent through the
high-resolution objective (see Fig. 4-10) and focused to a waist of 30 um at the atoms,
much smaller than the size of the 5-degree beam. Evaporation in the dimple trap,
along with a magnetic gradient along z, successfully produced degenerate samples.
Subsequently, following loading of the atoms into the 2D lattice, we were able to
observe Mott and band insulators. By tuning the power of the dimple beam, one also
has control over the trap curvature. This can be used to tune the chemical potential
of the system at a fixed atom number, enabling one to access different many-body
states. It also allows one to tune the initial sample size, which can be useful for

optimizing loading of the atoms into the lattice.

4.6 Imaging Paths

In this section, we give a list of the imaging paths used in the apparatus. This is
necessary for understanding some of the images in later sections. There are a total

of five imaging axes, shown in Fig. 4-1, Fig. 4-2 and Fig. 4-3. They are as follows.

1) MOT imaging along . This path intersects the MOT, and is also used by
the optical pumping beams for *°K and 23Na. It is displaced from the chamber
center by ~ 1 mm along . This axis can be used to image the MOT, and to image
atoms after the initial magnetic catch. Both ?*Na and *°K can be imaged along

this path.

2) Plug trap imaging along —y. This path intersects the high-resolution imaging
in the z-y plane. Vertically, it can be aligned from the vertical center of the
chamber up to ~ 2mm below the substrate, at which point it is blocked by the

in-vacuum RF antenna. The imaging path is opposite the direction of the optical
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plug, and is used to image atoms in the quadrupole magnetic trap, and in the
movable crossed ODT. It can be used to image the location of the optical plug.

Both #Na and *°K can be imaged along this path.

3) “Bouncing” imaging along &. This beam follows the path of the z lattice beam,
and is reflected off the substrate. This allows imaging of the region starting from
the surface of the substrate and extending to ~ 500 ym below it. This path can
be used for rough alignment of the y lattice beam, the y optical dipole trap, and
the y Raman beam. Both ?Na and *°K can be imaged along this path.

4) “Bouncing” imaging along —gy. This beam follows the path of the y lattice,
and is reflected off the substrate. This allows imaging of the region starting from
the surface of the substrate and extending to ~ 500 ym below it. This can be
used for rough alignment of the x lattice beam and 5-degree beam, and is used for
aligning the = optical dipole trap, the accordion beam, and the x Raman beam.

Both ?2Na and “°K can be imaged along this path.

5) The vertical imaging path. This passes through the high-resolution objective,
which transmits both 2*Na and #°K light. This path is split into two by a dichroic
after the high-resolution objective. The two paths, labeled z; and zy, are split
according to the wavelength of the imaging light. The 2; path only transmits 4°K
D1 light, while the z, path transmits all other wavelengths. The z; path is used
for single-site imaging. It has a magnification of ~ 90, and is imaged using an
ANDOR 1XON 897 EMCCD camera. For better signal-to-noise for absorption
imaging, the zo path has a lower magnification of ~ 10, and is imaged using a
PCO.PIXELFLY USB camera. The zy path is used for fine alignment of all three
lattice beams, the 5-degree beam, and the dimple beam. Alignment is performed
through absorption imaging of °K atoms on the D2 line. The z; and z, paths are

shown in Fig. 4-10.
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Figure 4-10: Vertical imaging paths z; and z,. The atoms are at I;; a secondary
imaging plane /5 is formed 400 mm from the second lens, away from [;. Focal lengths
are in units of mm. (a) Path z;. This path is used for single site imaging. The first
lens on the right represents the combined objective and solid immersion lens system.
The distances between the subsequent lenses are 620 mm, 800 mm and 300 mm. The
distance from the last lens to the camera is 604 mm. These parameters are optimized
for the smallest spot size though simulations with OSLO. Two SEMROCK LL01-780-
25 dichroic filters are placed at positions D; and Dy, 50 mm from the last lens. They
are angled-tuned to pass 770 nm light resonant with the D1 transition of “°K, and have
a bandwidth of 3nm. They are angled at opposite angles to minimize aberrations.
The dimple beam, which has wavelength ~ 830 nm, is sent into the objective with the
dichroic at D,. The dichroic at D; also allows absorption imaging on the D2 line of
10K (path 23). (b) Path z,. This path is used for absorption imaging, and is used for
alignment of the 5-degree beam and all three lattice beams. This path is split from
z1 at dichroic Dy, and has effective magnification of ~ 51.
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Chapter 5

Site-Resolved Imaging of *'K

In the previous chapter, we have discussed some of the motivations to build a quantum
gas microscope for ultracold fermions. We have also described the essential parts of
the experimental apparatus. In this chapter, we discuss the technical challenges of
performing quantum gas microscopy of fermionic K, and their solutions. Some of

the research described in this chapter have been reported in the following publication:

L. W. Cheuk, M. A. Nichols, M. Okan, T. Gersdorf, V. V. Ramasesh, W. S. Bakr,
T. Lompe, and M. W. Zwierlein, “Quantum-Gas Microscope for Fermionic Atoms,”

Phys. Rev. Lett. 114, 193001 (2015) [22]. Included in Appendix F.

The central feature of quantum gas microscopy is the ability to determine the
occupation of every lattice site with high fidelity. One prerequisite for site-resolved
imaging is an imaging system that has an imaging resolution on the order of the lattice
spacing. How this is realized in our apparatus has been described in Section 4.2.
Achieving high imaging resolution, however, is not the only challenge. The other
challenge is to obtain enough information from each atom in order to determine its
position. In this chapter, we describe some considerations and challenges concerning
this aspect of single-site imaging. Some of these issues are particularly problematic
for “°K trapped in an optical lattice formed by 1064 nm light. We will describe how
one can circumvent these problems with a specific Raman sideband cooling scheme.

With this Raman imaging scheme, we were able to successfully perform site-resolved
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imaging of *°K with high fidelity.

5.1 Considerations for Single-Site Imaging

In this section, we discuss some general considerations for site-resolved imaging of
ultracold atoms. The first requirement is purely optical. The imaging system must
have a resolution on the order of the lattice spacing; this requirement is satisfied with
the high-resolution imaging system described in Section 4.2. The second requirement
concerns the atoms. In order to determine the position of an atom via imaging, one
detects photons scattered off the atoms. In our experiment, we perform fluorescence
imaging [102], in which atoms excited by resonant light spontaneously emit photons.
By collecting these photons on a camera, the positions of the atoms can be determined.

One undesirable consequence of spontaneous emission, however, is heating caused
by photon recoil. If the heating is severe enough that atoms move to different lattice
sites during imaging, or gain enough energy to escape the lattice, the imaging will no
longer reflect the initial distribution, and the imaging fidelity will suffer. To estimate
the magnitude of this effect, consider an atom emitting a photon with wavelength .
In order to conserve momentum, the atom experiences a recoil of momentum Ap =
2 (27T

o —)2, which corresponds to

h%”. The energy associated with this process is E,es = 5

a temperature of 0.4 uK for potassium atoms emitting on the D1 or D2 line. It turns
out that this recoil temperature is similar to the typical temperature of degenerate
samples of ultracold fermions trapped in a lattice. Therefore, one would only be able
to scatter a few photons per atom before the sample is destroyed. However, in order
to have enough signal-to-noise for high fidelity imaging, one typically needs to detect
~ 1000 photons. Taking into account the 0.20 light collection efficiency of our high-
NA imaging system, at least 5000 photons needs to be scattered off each atom. Thus
direct fluorescent imaging is not viable.

The first method to improve the situation is to increase the depth of the optical
lattice. This has two effects. Firstly, increasing the lattice depth “freezes” the sys-

tem, since quantum mechanical tunneling becomes suppressed at higher depths. One
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therefore has more time to scatter photons before an atom tunnels to a neighboring
site. The second effect is that in a deeper trap, one can tolerate more heating before
atoms escape. Nevertheless, in our experiment, we are limited to maximum lattice
depths of 200 uK in each direction, corresponding to Vo ~ 1200. To estimate the
number of photons that can be scattered before an atom is heated out of the trap,

we associate a momentum scale ppe, with the trap depth Vp, given by

Pmaz = V szR\/;O = 7%1-\/;0 (5.1)

where a is the spacing of the lattice. Assuming that the heating process is diffusive in
momentum (this occurs in the case of counter-propagating beams), the total number

of photons that can be scattered before an atom is lost is

3pmagc ? 9)\2 "~
== 2
(Fe) = v 52)

In the case of a single resonant beam illuminating the atoms, the heating process is

no longer diffusive and the situation is worse. The total number of scattered photons

is
3pmaac _ 3)\ ~
2Ap  2a Yo. (5:3)

At first sight, the number of photons scattered seems sufficient in the first case;
~ 5 x 10 photons can be scattered before the atoms are heated out of the system.
Nevertheless, the imaging requirements for quantum gas microscopy are more strin-
gent. For high fidelity imaging, it is not enough for atoms to remain trapped in the
lattice; they must in fact remain on the same lattice site during imaging. As the
atoms heat up, they are promoted to higher bands, where the tunneling rate between
lattice sites can become large on the imaging time-scale. The imaging time, typically
~ 1s, is chosen as a compromise between collecting enough photons and keeping
losses due to background gas. For our lattice depths, this implies that atoms must

stay in the bottom few bands in order for tunneling to be negligible.

To estimate what temperature this corresponds to, we approximate each lattice
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Figure 5-1: Energy levels in a deep lattice. In a deep lattice (V> Eg), the spacing
between the lowest and second lowest bands is approximately given by the hw, where

w = 2v/VoER /h is the frequency of the harmonic oscillator that approximates the
potential near the minimum of a single lattice well.

site as a harmonic oscillator. In this limit, the harmonic oscillator frequency w cor-
responds to the bandgaps for the lowest few bands. Recalling that the harmonic os-
cillator frequency is given by w = 2\/70E r/h, one finds that in the case of \/70 > 1
and N ~ O(1) occupied bands, the energy of the system, relative to the trap depth, is
given by n = 2N/ \/VTO . The number of photons that can be scattered in the balanced
and unbalanced beam cases are thus reduced by n and /7 respectively. For N = 3,
these factors are ~ 1000 and ~ 40. This limits the number of scattered photons to
a value an order of magnitude lower than required for identifying an atom reliably.
Therefore, at experimentally achievable lattice depths, one must cool the atoms while
simultaneously scattering photons. This is the main challenge of quantum gas mi-
croscopy. Note that this conclusion depends on the mass of the atom, and the imaging
resolution of the system, and can thus be different for heavy atoms with transitions

at shorter wavelengths [89].

5.2 Issues with Imaging ‘“’K in 1064 nm Light

For quantum gas microscopes on bosonic 8’ Rb, polarization gradient cooling on the D2
line is used [10, 128], and allows one to scatter up to ~ 105 photons while maintaining
high imaging fidelities. In the fermionic alkali atoms *°K and SLi, the excited state

hyperfine splittings are smaller than 8"Rb, where the [’ = 2 and F' = 3 levels are
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Figure 5-2: Level structure of lowest excited states in “°K; Hyperfine structure of 4p
levels in 4°K.

split by 193 MHz. In “°K, the F” = 11/2 and F’ = 9/2 levels are split by 45 MHz,
about 7 times the natural line width (see Fig. 5-2b); in °Li the situation is worse, with
F’' =5/2and F’' = 3/2 split by only 3 MHz, half of the natural linewidth. We chose to
use 4K since the excited state is still resolved, suggesting that polarization gradient
cooling could still work, as demonstrated previously in free space [90]. Nevertheless,
it turns out that polarization gradient cooling is problematic for *°K atoms trapped
in an optical lattice formed by 1064 nm light. The reason lies in the presence of 3ds/s

and 3ds/; states, and to a lesser extent, 551/, states (see Fig. 5-2a).

In polarization gradient cooling on the D2 line, one drives transitions between the
ground 4s;/, and the excited 4ps/, manifolds. The 4ps/, — 3ds/o and 4ps/o — 3ds)2
transitions both lie at 1177nm. This implies that the lattice lasers at 1064 nm are
detuned only ~ 100 nm to the blue. This produces two undesirable effects. The first
is a large AC stark shift of the excited 4p states, which is 5.08 times larger, and
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opposite in sign relative to the ground state Stark shift [7]. At the lattice depth for
single-site imaging, the Stark shift approaches 60 MHz. The second effect is that the
strong Stark shifts lead to mixing between various states in the 4ps/, manifold. When
this effect becomes strong, the usual selection rules no longer apply. We discuss these

two effects in detail in the following two sections.

5.2.1 Anti-Trapping of the 4p States

A direct consequence of a large and opposite Stark shift in the excited states (4p)
is that an atom in the ground state (4s1/2) that is initially trapped in a lattice well
becomes highly anti-trapped once it is excited. The anti-trapping leads to rapid
dispersion of the atomic wave packet, and consequently heating.

To estimate the effect of anti-trapping, we consider a simple model where a two-
level atom is trapped in the ground state of a harmonic trap with trap frequency w. In
the excited state, the atom experiences an anti-trapping potential V(z) = —%m@%ﬁ
with anti-trapping frequency @. On average, the atom spends a time of 1/I" in the
excited state, where I' is the excited state line width.

The solution for a classical particle in the anti-trapping harmonic potential V (z)
has the form of zgexp (+wt) where zq is the starting position and ¢ is the elapsed
time. Therefore one expects that when an atom is excited, the width of the ground
state wavepacket increases by a factor of exp (w/I"). Using the virial theorem, one
finds that the energy is proportional to (z?), and thus increases by exp (20/T'). At
the imaging depth, one finds that a single excitation event is enough to increase the
energy of the atom by a factor of 3. One might try to reduce this type of heating
by reducing w. If one requires that 5000 scattering events increase the energy by
a factor of 3, @ must be reduced by 5 x 107*. Since the anti-trapping frequency is
proportional to the square-root of the lattice depth, this corresponds to reducing the
lattice depth by 2 x 1072. However, at this depth, quantum mechanical tunneling in
the lowest band occurs at a rate of ~ 1000Hz, which restricts the imaging time to be
< 1ms.

We are thus in a difficult situation. On one hand, deep lattice depths are required
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to keep atoms from moving during imaging, and to relax the temperature requirements
during imaging. On the other hand, deep 1064 nm lattices lead to rapid heating for
40K in the 4p states, which are need to spontaneously scatter photons for imaging. At
first sight, it seems that the only solution is to change the wavelength of the lattices.
This was not possible in our experiment without major modifications. Nevertheless,
as we describe in Section 5.3, the appropriate imaging scheme can circumvent this

problem of anti-trapped excited states.

5.2.2 Mixing of Excited Hyperfine Levels

In addition to the anti-trapping of the excited 4p states, which is a major issue
concerning the motional degrees of freedom, another problem renders polarization
gradient cooling on the D2 line ineffective. At the imaging lattice depth, the excited
4p states experience an AC stark shift of 55 MHz, while the hyperfine levels in 4ps /5
are spaced by at most ~ 50 MHz. Consequently, the excited 4ps/, states become
highly mixed. Even different hyperfine manifolds can be mixed, and F' is no longer
a good quantum number. When the total angular momentum J = 1/2, via the
Wigner-Eckart theorem, the effect of a light field can be decomposed into a uniform
shift along with an effective magnetic field. In this case, the effective magnetic field is
eliminated when the polarization is linear. But for the 4ps/, manifold, where J = 3/2,
one can have tensor light shifts. This implies that even with linear polarizations,
different states can be coupled by the tensor light shift. The specific case for *°K in
the presence of 1064 nm light is shown in Fig. 5-10. One can see that at a typical
imaging lattice depth of h x 10 MHz, the usual selection rules, such as AF # 2 or
Amp # 2, are no longer valid as F' and mg are no longer good quantum numbers.
As a result, polarization gradient cooling is expected to be severely affected. Even

optical pumping on the D2 line becomes inefficient.
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Figure 5-3: Energy diagram of 4ps/, levels in the presence of 1064 nm light. Here, a
quantization of 4.0 G is applied to split the Zeeman levels. The horizontal axis is the
lattice depth experienced by the 4s; /5 state in MHz. The imaging depth corresponds
to ~ 10 MHz on the horizontal axis. (a) Linear polarization perpendicular to mag-
netic field. (b) Linear polarization parallel to magnetic field. The energy levels are
computed following [7].
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5.3 Raman Sideband Cooling

In light of the problems that we encounter for °K in a 1064 nm lattice, we decided to
use Raman sideband cooling as an imaging technique since it allows one to rely less
on the anti-trapped excited 4p states. Furthermore, in addition to cooling, Raman
sideband cooling also produces spontaneously emitted photons that can be collected
for fluorescent imaging. We refer to this scheme as Raman imaging.

Raman sideband cooling was first proposed and realized for ions in the early 1990s
[91]. It was subsequently also applied to atoms, directly producing samples with
phase space densities approaching unity [141, 71]. In recent years, this technique has
been applied as a method of rapid low loss cooling in both bulk and optical tweezer
experiments [108, 135, 69]. Nevertheless, before our work, Raman sideband cooling

had not been demonstrated for potassium.

5.3.1 How Raman Sideband Cooling Works

In order to understand how Raman sideband cooling works, we first consider the sim-
pler scheme of sideband cooling, a technique routinely used in cooling ions. Suppose
we have a two-level atom with ground (excited) state |g) (]e)) in a harmonic trap.
Further suppose that the ground and excited states experience identical trapping
potentials V(z) = tmw?a?.

In the sideband-resolved regime, where the excited state linewidth I' is much nar-
rower than the harmonic trapping frequency w, one can selectively drive vibrational-
level changing sidebands nw on either side of the carrier transition wy (see Fig. 5-4b).
For example, when one is red-detuned by w relative to the bare transition frequency
wy, the vibrational state is lowered as the atom is transferred into the excited state.
Vibration-changing Raman transitions alone, however, do not lead to cooling, as
these processes are coherent. In order for cooling to occur, there must be dissipation.
For the case of Raman cooling, one must close the cycle after a vibration-lowering

transition: the internal state of the atom must be reverted back to the ground state

without changing the vibration number. The atom will decay back to the ground
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Figure 5-4: The sideband-resolved regime. (a) The vibrational changing transitions
are spaced from the carrier frequency wqg by the trap frequency w. Shown are the tran-
sitions that change the vibrational number by -1,0 and 1 respectively. (b) Fluorescence
as a function of transition frequency detuning A from the carrier wy, normalized to
the trap frequency w. When I' < w, the sidebands can be resolved. Shown is the
case where I' = 0.1w, with Lamb-Dicke parameter of 0.2, for an atom in vibrational
level > 1.

state via spontaneous emission. To ensure that the vibration number is preferentially
unchanged, one has to work in the Lamb-Dicke regime, where the wavelength A\ of
the light driving a transitions is large compared to the harmonic oscillator length
l= \/% . In this limit, an atom preferentially preserves its vibrational state when it
decays from |e) to |g) (see Fig. 5-5).

To see why the vibrational number is preferentially unchanged, consider how two
vibrational states of the harmonic oscillator are coupled in the presence of light. We
only consider the motional part of the atom, and label harmonic oscillator states by
In). In the dipole approximation, the atom-light coupling has spatial dependence e*,

where k is the wavevector of the light. In the Lamb-Dicke regime, one can expand
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Figure 5-5: Sideband Cooling. An atom starts in |g, 1). Light resonant on the wy — w
cooling sideband excites the atom to |e,0). The atom subsequently decays into |g, 0)
preferentially, and its vibrational number remains unchanged. Overall, the energy
decreases by hw.

the coupling term as
' 2,2

e””:l—l—ikx—T%—.... (5.4)
This is valid since the spatial extent of the wavefunctions (z?) is on the order of [?,
and thus the expansion parameter kz satisfies (k?2?) < 1. Since different harmonic
oscillators states are orthogonal, vibrational changing transitions must originate from
terms that contain at least one factor of . Recalling that & = \/Li (a + aT), where a
(a') is the lowering (raising) operator, one finds that the matrix elements that couple
states differing in vibrational number by An are suppressed by 2", with n = kl/v/2.
1 is known as the Lamb-Dicke parameter, and the Lamb-Dicke regime is defined by

n <1

Unlike in ions, where sideband cooling can be applied, in atoms, one typically can-
not reach high enough trap confinement frequencies where the vibrational sidebands
are resolved. For example, the 4p states in K have linewidths of I' = 27 x 6 MHz,
while at the deepest lattice depths achievable in our experiment, the sideband fre-

quencies are ~ 300 kHz.

Nevertheless, with the use of two-photon Raman transitions, one can easily resolve

vibrational sidebands. To see why, consider a two-level system of two hyperfine states
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la) and |b) in the ground 4s manifold of “°K. Raman transitions between these two
states are driven with the use of two laser beams with frequency w; and ws = wy + 4,
where ¢ is the detuning and wy, is the bare energy difference between |a) and [b). As
discussed in Section 3.2, when w; and wy are detuned A from the 4s — 4p transition

frequency, the effective two-photon Rabi frequency ()5 is given by

(5.5)

where (2 is the single-photon Rabi frequency. In the limit where A > T, each beam
admixes ?/A? of excited state into the ground states |a) and |b), which implies that
the spectral resolution is improved ?/A? relative to the natural line width of T.
Thus, vibrational transitions with w < I' can be resolved, since one can improve the
resolution arbitrarily by increasing the two-photon detuning, at the expense of laser
power.

Analogous to sideband cooling, one can replace the states |g) and |e) with two
ground hyperfine states |a) and |b), and replace the single photon vibrational-lowering
transition with a two-photon vibrational-lowering transition. A scan of the two-
photon detuning ¢ therefore produces an analogous sideband spectrum as shown in
Fig. 5-4b. In order to recycle the internal state after removal of one vibrational
quantum, sideband cooling relies on spontaneous emission from |e) to |g) in the
Lamb-Dicke regime. For Raman cooling, one cannot rely on spontaneous emission
as both |a) and |b) are ground hyperfine states with long lifetimes. Instead, one can
perform optical pumping, which transfers atoms from |b) back to |a). This process of
lowering the vibrational number via a Raman process and recycling the internal spin

state via optical pumping is Raman sideband cooling.

5.3.2 What to Do About the Excited States?

The reason we chose to use Raman sideband cooling is that it allows us to avoid
the problem of anti-confinement in the 4p states and the mixing of excited 4ps/;

states. Alternatively, EIT cooling has also been demonstrated to allow site-resolved
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imaging of “°K [51]. In Raman sideband cooling, the coherent vibration-changing
two-photon process can have negligible admixture of the excited states, as long as
the two Raman beams are far detuned from single-photon resonance. Whereas the
excited state fraction scales as 1/A2, where A is the single-photon detuning, the
two-photon Rabi frequency scales as 1/A, as long as one is detuned much less than
the spin-orbit splitting between 4ps, and 4p; /5. The effect of the excited states can
therefore be eliminated as long as one has sufficient power.

The second ingredient of Raman cooling, optical pumping, must rely on excited
states since photons must be spontaneously emitted. From the discussion of mixing
of hyperfine states in Section 5.2.2, one sees that for effective optical pumping, one

must avoid tensor light shifts. We thus optically pump via the 4p;/, states.

The problem of anti-confinement nevertheless remains even for the 4p;/, mani-
fold. At first sight, anti-confinement seems unavoidable, as spontaneous emission is
required for optical pumping. Taking into account that optical pumping typically
requires 3 to 10 photons, the estimates in Section 5.2.1 suggest that, for each cooling
cycle, the heating due anti-confined excited states will be larger than the cooling of

hw by the Raman beams.

The estimates in Section 5.2.1, however, are for the situation when an atom is
excited on resonance. The situation is much improved when the optical pumping light
is detuned. With detuning, one can suppress the number of atoms that experience
heating due to anti-trapping, while still allowing spontaneous emission and therefore
optical pumping to proceed. To understand how detuning helps, we introduce the
dressed atom picture [26].

Consider a two-level system with ground and excited states |g) and |e) separated
with energy difference hw,y, in the presence of light detuned by 0 < we, from the
resonance. One can describe the combined atom-photon system using the dressed
state basis. We first take into account the number of photons N in the light field
by defining basis states |g, N) = |g) ® [N) and |e, N) = |e) ® |N). Since we are
close to resonance (0 < wey), pairs of states consisting of |g, N) and |e, N — 1) are

nearly degenerate. In the rotating wave approximation, the light field couples pairs
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of states |g, N) and |e, N — 1) with amplitude /€2/2, where 2 is the Rabi frequency.
The resulting dressed states |G, N) and |E, N) connect to |g, N) and |e, N — 1) in the
limit of 2 — 0. They can be expressed in the undressed basis |g, N) and |e, N —1) as

|G,N) = cosOl|g,N)+sinfle, N — 1)

|[E,N) = —sinf|g, N) +cosf|e,N — 1) (5.6)

where tan(26) = —Q/4.

To describe spontaneous emission, we observe that spontaneous emission occurs
when |e, N) decays to |g, N + 1). Inspection of Eq. (5.6) reveals four possible decay
channels: |G,N) — |G,N — 1), |G,N) — |E,N — 1), |[E,N) — |G,N — 1) and
|E,N) — |E, N —1). Denoting the corresponding decay rates by I'cq, ['¢r, ['mg and
['gE, one finds that [26]

Fee = I'sin?6cos?d

I'cp = I'sin*é

I'ge = Tcos*d

g = [I'sin®@cos®6, (5.7)

where I is the excited state linewidth. In the limit of [Q2/6] > 1 and § > T, cos? 0 ~ 1
and sin?f ~ s = Q?/6%. The decay rates in Eq. (5.7) are then I's, I's?, T and T's

respectively.

We now consider the scenario where the excited state |e) is anti-trapped, but the
ground state |g) is trapped. At the Stark-shifted resonance, both |G, N) and |E, N)
states become anti-trapped when 2 # 0, as shown in Fig. 5-6. However, at large
detuning 6 > Q, |E, N) consists of the bare excited state |e) admixed with a small
amount of |g), and is thus anti-trapped. Similarly, |G, N) is the trapped ground state
lg) admixed with a small amount of anti-trapped excited state |e). This is depicted

in Fig. 5-7.

The detuning ¢ has two effects. The first concerns the steady state population in
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Figure 5-6: Dressed States at Zero Detuning. (a) When Q = 0, the state |G, N)
(|E, N)) coincides with |g, N) (|[E, N — 1)). Dressed state |G, N) is predominantly
ground state, and is shown in blue, while |E, N) is shown in red. As shown, |g)
experiences a trapping lattice potential, while |e) is anti-trapped with 5.5 times the
ground state trap depth. The arrow indicates the Stark-shifted resonance. (b) At
2 # 0, mixing of |g, N) and |e, N — 1) states occur. The admixture of |g) and |e) is
shown by the color of the dressed state, and varies spatially. At the locations where
the light is resonant, the dressed states are equal admixtures of |g) and |e), and |G, N)
and |F, N) forms a doublet that is split by AQ. In this plot, AQ = 2V}, where 1} is
the lattice depth experienced by the ground state |g).
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(a) (b)

Figure 5-7: Dressed States at Non-Zero Detuning. (a) At Q = 0, the dressed states
|G, N) and |E, N) are now split by an additional £:6/2. (b) Even when Q # 0, the
admixture of |e) (|g)) into |G, N) (|E, N)) can be small. Shown here is the case for
/6 = 2/3. The color indicates the admixture of |g) (blue) and |e) (red). When
Q # 0, four decay channels are possible. These are labeled and indicated by the
ArTOwS.
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the anti-trapped states |E, N). The population in |E, N) is determined by the ratio
Tor/TEg, and is s? in the large detuning limit s < 1. The second effect concerns
the decay ratios into anti-trapped states |E, N). For atoms starting in |G, N), the
branching ratio into anti-trapped |E,N) is I'¢g/I'ce ~ s. For atoms starting in
|E, N), the branching ratio into |E, N) is 'gg/T're¢ ~ s. Atoms thus preferentially
decay into the trapped state |G, N).

Therefore, at large detuning, the decay is primarily between two trapped states at
a rate given by I'ge = I's. The excitation rate to an anti-trapped state is suppressed,
and is given by I'qr ~ I's’. The effect of anti-trapping can thus reduced even in
the presence of spontaneous emission. If one requires an atom to scatter ~ 1 x 10%
photons before entering an anti-trapped state, then one finds s ~ 107, or §/Q ~ 200.
For s ~ 107, we obtain a spontaneous emission rate ~ 4000 photons per second for

40K, sufficient for site-resolved fluorescent imaging.

5.4 Implementing Raman Imaging of **K

In Section 5.2, we discussed the considerations for performing single-site imaging of
40K, In Section 5.3, we described how Raman imaging can overcome the issues of
anti-trapped excited states and excited state hyperfine mixing. These problems are
not specific to *°K, but are particularly severe for “°K in the presence of 1064 nm.
Here, we describe how single-site imaging of a single 2D layer of “°K atoms is achieved

using Raman sideband cooling in our apparatus.

5.4.1 Preparing a Single Layer of ““K Atoms

As described in Section 4.5.1, the trapping potential formed by the 5-degree beam
forms a vertical lattice with spacing ~ 5pum along Z. Many layers of the lattice
can be occupied. The presence of many layers along the imaging axis can lead to a
diffuse glow, even when only one layer is within the depth of focus. This can result
in decreased signal-to-noise, which makes identifying the occupation of a lattice site

more difficult. We therefore first prepare a single layer of atoms. For our initial
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Figure 5-8: “Slicing” spectrum. Shown is the atom number versus microwave fre-
quency (detuning from fixed frequency) for |9/2,—-9/2) — |7/2,—7/2) before (blue
circles) and after (red squares) slicing.

attempts at single-site imaging, we started with ~ 10° “°K atoms at ~ 10 K in the
hyperfine state |F' = 9/2, myr = 9/2), prepared via sympathetic cooling with **Na in
the plugged quadrupole magnetic trap. The optical plug is then switched off and
current is run through the Feshbach coils to produce a magnetic field along z. This
shifts the center of the quadrupole trap, which is initially located ~ 9 mm below the
substrate. The center is moved upwards in 50 ms to the surface of the substrate. The
5-degree beam, described in Section 4.5.1, is subsequently ramped up in 5 ms to trap
atoms, before they are lost from collisions with the substrate. The magnetic trap
is subsequently ramped down. An RF sweep then changes the hyperfine state from
19/2,9/2) to |9/2,—9/2). Since the 5-degree beam is reflected off the surface at 5.8°,
it forms a vertical lattice with spacing 5.3 um. The vertical size of the 5-degree beam
allows four layers to be loaded.

In order to select one layer, we use a “slicing” technique that relies on a layer-
dependent magnetic field [128]. By applying 50 A of current along the curvature
coils run in anti-Helmholtz configuration, we produce a magnetic field gradient of
45 G/cm along the vertical 2z direction at an offset field of 40 G. This results in an
inter-layer frequency difference of 35 kHz on the |9/2, —9/2) — |7/2, —7/2) transition,

as shown in Fig. 5-8. In order to have stable enough transition frequencies to select
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a single layer, one must stabilize both the magnetic field offset and the gradient.
Unfortunately, the experiment is in close proximity (~ 5m) to three elevators, which
produce time-varying magnetic fields along the vertical direction with a range of
+20mG. Since this is in the same direction as the magnetic field that we apply
during ”slicing,” and the magnitude can shift the layer frequency by more than a
layer, we must compensate for these fields. We place a HONEYWELL HMC2003
magnetometer on the chamber, ~ 50 cm above the atoms. This location is chosen
for two reasons. The first consideration is that the magnetometer should best reflect
the magnetic field contribution of the elevators that the atoms experience, and thus
should be placed close to the chamber. The second is that the magnetometer should
be in a location where the magnetic field generated by the leads to the coils are
less than 2 G, which is the saturation limit of the magnetometer. We feedback on
the magnetometer signal, using a pair of coils around the experiment. In order to
avoid 60 Hz magnetic noise, the heaters for the *°K oven and 2D MOT, which are
~ 50 cm from the atoms, are switched off using a MOSFET during “slicing.” With
the ovens switched off, the residual magnetic field noise is ~ 1 mG. Combined with
compensation of the elevator fields, the ambient magnetic field is reproducible to a
level of £2 mG. The residual magnetic field is determined solely by the current that is
run through the curvature coil. This current, produced by a DELTA ELEKTRONIKA
SM 18-50 P251 power supply, is measured using a DANFYSIK LEM IT 200-S
current transducer. The current from the transducer is converted to a voltage via
four high-precision low-drift resistors attached to a heat sink, allowing for accurate

current measurements at the 107° level.

To select a single layer, we apply a 1 ms microwave pulse that sweeps a frequency
span of 20kHz. To minimize the influence of 60 Hz noise on the magnetic field, the
start of the pulse is triggered onto a 60 Hz signal obtained from line voltage. The
phase of the trigger is set such that the transition frequency is minimally sensitive.The
pulse selectively transfers the second layer of atoms to |7/2,—7/2). Subsequently, a
resonant light pulse on the |F = 9/2,mp = —9/2) — |F' = 11/2,m}, = —11/2)

cycling transition is applied to remove atoms in the other layers. The |7/2,—7/2)
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atoms in the desired layer are then transferred back to [9/2,—9/2) using a 10ms
pulse sweeping over 80 kHz.

We then produce a [9/2,—-9/2)-|9/2, —7/2) spin mixture via a radio-frequency
sweep in order to allow the gas to thermalize. By lowering the power of the 5-degree
beam, the atoms are evaporatively cooled. To image the atoms, the lattices beams
along the z, ¢ and 2z are ramped up and increased to a depth of ~ 200 uK, where
tunneling for atoms in the lowest few bands are negligible during imaging times of

~ 1s.

5.4.2 Raman and Optical Pumping Scheme

While there are many different Raman cooling schemes, such as degenerate sideband
cooling [141], we have opted to use a two-level scheme. This is chosen to reduce
the number of optical pumping photons required, as optical pumping is the process
by which atoms can experience the deleterious effects of 1064 nm light. In order
to have an isolated two-level system, we apply a magnetic field of 4.2G to isolate
the microwave transition between state |F'=9/2,mp = —9/2) and |7/2,-7/2) of
the ground 4s;/, manifold. At this magnetic field, the various transitions between
F =9/2 and F = 7/2 are spaced by > 1 MHz. The magnetic field is oriented along
Z, while the two Raman beams propagate along & and g respectively, at an angle
of 10.8° relative to the z-y plane. The polarizations of the two beams are along
g, and z, respectively. The Raman beams can thus drive |[Ampg| = 1 transitions,
up to polarization imperfections. Since the transitions are non-degenerate, one can
selectively address only the Amp = +1 transition by selecting the appropriate two-
photon detuning. The Raman beams are detuned ~ 50 GHz red of the D2 line.
The light source and the detailed setup for generating the Raman frequencies are
described in Appendix B.3. The geometry of the Raman beams also allow coupling
to sidebands in all directions, albeit at a weaker strength along Z due to the shallow
angle. Specifically, the Lamb-Dicke parameters for the Raman beams are 0.17 along
2 and ¢, and 0.07 along 2.

The second ingredient of Raman cooling is optical pumping. Previously in Sec-
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tion 5.3.2, we noted that it is crucial to detune the optical pumping beams when the
excited state is anti-confined. It is also important to perform optical pumping on the
D1 line (4s1/2 — 4p1/2) since the 4ps/, manifold is susceptible to large tensor light
shifts in the presence of the optical lattice. Our optical pumping scheme uses two
frequencies, one for F-pumping and one for mp-pumping. We found empirically that
it is optimal to have the F-pumping light detuned by—80 MHz from the Stark-shifted
F =7/2 - F' = 9/2 transition, and the mg-pumping light detuned by —80 MHz.
On the experiment, the optical pumping beams originate from the same fiber, and
the polarization of both beams are optimized to minimize admixture of o light. The
pumping beams propagate along z, at a shallow angle of 10.8°, and are reflected off
the substrate. The beam-size at the substrate is picked to be ~ 200 um, as a bal-
ance between maintaining uniformity of the pumping beam and minimizing scatter
of optical pumping light due to surface roughness of the substrate. Due to the ge-
ometry of the beams, there is a small admixture of 7w-polarized light. This leads to
a ~ 1072 smaller rate along 7 transitions. For F-pumping, this is not a major is-
sue. However, for mp, pumping light, this can reduce the darkness of the |9/2, —9/2)
state. It is thus preferable to pump on the F' = 9/2 — F’ = 7/2 transition in order
to keep 9/2,—9/2) dark. We rely on the small 7 admixture to pump atoms out of
19/2,—7/2).

5.4.3 How to Make Raman Imaging Work

In this section, we outline the steps we took to make Raman imaging work. The first
step is to ensure that the atoms are in low enough vibrational bands where Raman
cooling is efficient. One must also ensure that the Raman beams can transfer atoms
between hyperfine states. These two requirements can be checked by performing
Raman spectroscopy. We first calibrate the |9/2,—9/2) to |7/2,—7/2) frequency
using microwave spectroscopy. Atoms are transferred to |7/2, —7/2) with a microwave
sweep, after which we fluorescent image the remaining |9/2,—9/2) atoms with a
resonant light pulse on |9/2, —9/2) — |11/2, —11/2) transition. The number of atoms

is inferred from the amount of fluorescence.
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With the transition frequency known, we next performed Raman spectroscopy.
After the microwave pulse hides atoms in |7/2,—7/2), we apply a reverse sweep to
19/2,—9/2) using the Raman beams. The two-photon detuning of the Raman beams
is swept during the pulse. By adjusting the final evaporation depth, we were able to
reach a regime with high sideband asymmetry, indicating that the majority of the
atoms were in the lowest vibrational band in along all three axes (See Fig. 5-9). This

also provided the frequencies of the sidebands.
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Figure 5-9: Sideband asymmetry measured via Raman spectroscopy. Using a mi-
crowave sweep, atoms are initially transferred to |7/2,—7/2). We transfer the atoms
to [9/2,—9/2) and measure arrivals via fluorescent imaging with resonant light. The
horizontal axis indicates the frequency used for the double-pass AOMs for the Raman
beam along 2. The carrier transition is indicated by the red arrow. Heating sidebands
for the three directions are visible on the left of the carrier; corresponding cooling
sidebands are only observed for the Z direction.

In order to implement optical pumping, one must first identify the frequencies of
the Stark-shifted resonances. To determine the Stark shift, we first prepared atoms
in ' = 9/2. When a pulse of D2 light resonant with the F' = 9/2 — F' = 11/2
transition, the 9/2 — 9/2 transition, or the 9/2 — 7/2 transition is applied, atoms
are either lost due to heating, or optically pumped into F' = 7/2. The Stark shift can
then be obtained by comparing the resonant frequencies with and without lattice, as
shown in Fig. 5-10.

The optical pumping beams were subsequently tuned to their respective Stark-
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Figure 5-10: Measuring Stark shifts of the D2 transitions. We measure the remaining
atom number as a function of the frequency of a resonant light pulse on the D2 line.
Shown in blue circles is the measurement without the 1064 nm lattice. From left to
right, the three loss features correspond to the 9/2 — 11/2,9/2 — 9/2 and 9/2 — 7/2
transitions respectively. The remaining number measured in the lattice is shown in
red squares. Comparison of the resonant features between the two measurements
gives a Stark shift of ~ 60 MHz.

shifted resonances. To allow easy scanning of large frequency ranges without signifi-
cant changes in intensity, the F' and mp pumping light was provided by two ECDLs,
which were offset-locked to a DBR laser locked to the D1 line. Next, we optimized
the polarization of the optical pumping beam to have minimal o, admixture. This
is non-trivial since the incoming optical pumping beam interferes with its reflection
off the substrate. In order to have full control over the polarization, a A\/2 and a
A/4 waveplate were added to the beam. The angles of the two wave plates were then
optimized by the lifetime of |9/2, —9/2) atoms.

With the sideband frequencies known and the optical pumping frequencies and
polarizations found, we attempted Raman sideband cooling. We initially used a
pulsed scheme, since it was conceptually easy to understand. In the pulsed scheme,
vibrational lowering pulses to address all three directions are applied sequentially,
after which a pulse of optical pumping is applied. With optimized pulse parameters,
we were able to obtain a first signal of Raman cooling, where we could apply ~

100 cooling pulses before losses were significant. During this time, the fluorescence
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also increased linearly. While this was encouraging, the lifetime with the cooling
pulses was only ~ 20 ms, and we were only able to obtain roughly the same number
of scattered photons as resonant fluorescent imaging. This corresponded to ~ 100

collected photons.

Adding a detuning of ~ +30 MHz to both the F' and mz pumping beams, we were
able to extend the lifetime to ~ 1000 cycles. By fixing the number of Raman cycles
at ~ 10°, we further optimized the intensity and frequencies of the two beams. This
provided a lifetime of ~ 5 x 10* cycles, corresponding to a lifetime of 40s. At this

point, the scattering rate was sufficient to detect single atoms.

The next step was to optimize the imaging system. First, one must pick a magni-
fication of the imaging system. As a compromise between signal per pixel and spatial
resolution, we chose to image each lattice site to 3 x 3 pixels. Through simulations of
the optics system in OSLO, we optimized the imaging system to minimize the spread
of the energy density of a point source. The setup of the single-site imaging system

was described in Section 4.6 and Section 4.2, and is shown in Fig. 4-10.

One technical consideration in the experiment is background light due to scat-
tering from the substrate. Since the lattice beams, the optical pumping beams and
the Raman beams are all reflected off the substrate, roughness of the substrate sur-
face produces a background of scattered light. The lattice light has a wavelength of
1064 nm, far detuned from the D1 and D2 lines of “°K. It can therefore be easily fil-
tered out. For “°K, the D1 and D2 lines are split by 3 nm, just enough for interference
filters to selectively transmit one of the two wavelengths. Since the optical pumping
has to be on the D1 line to avoid tensor light shifts (see Section 5.2.2), we chose to
tune the Raman beams close to the D2 line, as mentioned in Section 5.4.2. Note that
the majority of spontaneously scattered photons are generated during optical pump-
ing. Only spontaneously scattered photons can be collected by the imaging system,

and give information about the locations of the atoms.

After focusing the imaging system, we obtained the first detection of single 4°K
atoms, shown in Fig. 5-11. The atom number was measured as a function of imaging

time, and a lifetime of 79s was obtained. While the lifetime of the total number
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Figure 5-11: First signal of single atoms. (a) Bare image obtained using Raman
cooling. (b) Corresponding measurement of total fluorescent photon counts as a
function of imaging time show in circles. Shown in dashed is the exponential fit,
which gives a time constant of 79s.

of atoms gives an estimate of the fidelity, it does not directly reveal whether atoms
are hopping between sites. For example, if the gas is dilute, and the hopping rate is
low enough such that atoms hop but remain in the lattice, hopping will not result in
loss. Therefore the net loss rate only provides an upper bound on imaging fidelity.
To determine the fidelity, we must next identify occupation of the lattice sites, which

will be described in the next section.

5.5 Image Reconstruction and Fidelity Estimation

After the imaging system is focused on the atoms, one can proceed to characterize
the imaging fidelity by measuring hopping and loss rates during the imaging process.
Before this can be done, one must be able to reconstruct images into maps of occupied

and unoccupied sites. The necessary steps are outlined in the following sections.

5.5.1 Identifying Lattice Axes and Spacings

The first step in image reconstruction is identification of the lattice axes and spacings.

We start by imaging a dilute sample, where atoms well-separated. The coordinates
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(z,y) along the camera axes of each atom are recorded. We then transform the

coordinates (z,y) to a new set of coordinates (z’,y') via

¥ = wcosl,+ysinb,

y = —wxsinf, + ycosb,. (5.8)

The task at hand is to identify 6, and 6, such that 2’ and vy coincides with the z and
y lattices. Note that 6, need not equal 8, as the angle between the lattices can differ
slightly from 90°. From the list of transformed coordinates (z’,y’), we construct two
histograms of all possible differences in 2/, and in 3’ respectively. When 6, and 6,
are equal to the relative angles of the x and y lattice axes, the respective histograms
show periodic modulation, as shown in Fig. 5-12b. The lattice spacings can then be
precisely determined by identifying the position of the fundamental in the Fourier
spectrum, as shown in Fig. 5-12c. The angles are found by fitting the magnitude of

the fundamental as a function of 6, and 6, as shown in Fig. 5-12d.

5.5.2 Image Deconvolution

If the imaging resolution is much better than a lattice site, one only needs to identify
the axes and spacings. In order to check the imaging resolution, we experimentally
determine the point-spread function (PSF) by averaging isolated atoms in sparsely
filled images. The measured PSF had a full-width half-max (FWHM) of 640 nm
(Fig. 5-13), which is slightly larger than the lattice spacing of 541 nm. In order to
resolve occupation for each lattice site, we therefore must perform some additional
image processing. In previous bosonic microscopes, an algorithm that minimizes
differences between a measured image and an image simulated with the measured
PSF was used [9, 144]. We have opted for a simpler deconvolution algorithm that is
computationally less intensive. Noting that convolution corresponds to multiplication
in Fourier space, deconvolution can simply be carried out by division in Fourier space.
The exact imaging processing procedure is described in the following.

We first subtract a “dark” frame, where atoms are removed but the Raman cool-
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Figure 5-12: Identifying Lattice Axes and Spacings. (a) Diagram showing the coor-
dinate transformation (z,y) — (2/,y’) described in Section 5.5.1. (b) Histogram of
differences in 2’ near the optimal angle 6,. (c) Magnitude of the Fourier transform of
the difference histogram. The location of the main peak gives the spatial frequency
hence the lattice spacing along this direction. (d) Height of the Fourier peak as a

function of angle ¢,. Shown in dashed is a Gaussian fit; the fitted center gives the
optimal 6,,.
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Figure 5-13: Measurement of the point-spread function (PSF). Radially averaged
profile of the PSF shown in blue circles. A double Gaussian fit is shown by the red
dashed line. The dotted lines indicate the location of the half-width-half-maximum;
the corresponding FWHM is 640 nm. Shown in the inset is the PSF, obtained by
averaging regions around isolated atoms.

ing beams are on. This is done in order to minimize the effect of optical pumping
light scattered from the surface of the substrate. Since the dark frame only has long
wavelength intensity modulations, we Fourier filter the dark frame before it is sub-
tracted. The procedure for filtering as as follows. From the dark frame D(x), we
obtain the Fourier transform D(q). D(q) is multiplied by a filtering function g(q)

before an inverse Fourier transform is applied. The filter function g(q) is given by

1
g(q) = m7 (5.9)

where we pick go = 0.0976(Az)~ 1, where Az is the pixel size and is ~ 1/3 of a lattice
site. For theses parameters, filtering mostly reduces the noise that is added when the
images are re-sampled at a higher resolution.

The subtracted image I(x) is then deconvoluted by the following steps.
1) We Fourier transform the image to obtain I(q).

2) I(q) is filtered with a Fermi-Dirac filter to obtain I5(q) = I(q) * f(q) where
f(a) =1/(exp(la] = ¢o)/qu] + 1), where o ~ 1.5/(Az) and g, ~ 0.1. Since g is
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Figure 5-14: Image deconvolution. (a) Image with dark frame substracted. (b)
Subtracted image after deconvolution.

set to be many times the resolution limit of ~ 0.3/(Ax), it mainly removes noise

when the image is resampled by a factor of 3.
3) P(q) is obtained from the point-spread function P(x)

4) A processed Fourier-transformed signal I3(q) is obtained via

(@) = ha) 5 A

P _ . (5.10)
(@)P(q) +e

The constant € is set to 0.01. The second factor is used instead of division by
f’(q), since we have limited signal-to-noise. In the presence of noise, division by

P(q) can lead to large amplitudes in regions where P(q) is small.
5) We reverse Fourier transform I5(q) to obtain the deconvoluted image I5(x).

The deconvolution procedure above is also known as Weiner deconvolution in
image processing. This is computationally simple since one only needs to perform
Fourier transforms and simple algebraic manipulations. An example of deconvolution

is shown in Fig. 5-14b.
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Figure 5-15: Identifying the phases of the lattices (a) Image after deconvolution. (c)
Image after deconvolution overlaid with underlying lattice.

5.5.3 Identifying the Phases of the Lattices

After deconvolution, the next step is to identify the phase of the lattice along the two
directions. We impose a lattice from the previously determined lattice spacings and
angles, but vary the offset of each lattice site by = 1/3 of a site. At each of the 9 x 9
pairs of offsets, the deconvolved image is binned by the imposed lattice. The number
of sites above a certain threshold is recorded. Next, we sum the map along either
of the lattice axes, and repeat the resulting 9 points. We fit a sine to the resulting
curve, which gives a rough estimate of the phase along each direction. The 9 x 9
map is then shifted by the fitted phase. This roughly centers the maximum onto the
center of the 9 x 9 map. We then fit a 2D Gaussian to the map. The center of the
Gaussian gives a precise determination of the phase. A deconvolved image overlaid

with the lattice is shown in Fig. 5-15.

5.5.4 Identifying the Occupation of Lattice Sites

With the offsets of the lattices found, we bin the deconvolved image into each lattice
site. A histogram of the counts per bin is then generated. As shown in Fig. 5-16a,

the histogram shows a clear bimodal distribution, with one peak centered at zero
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Figure 5-16: Identifying site occupation. (a) Histogram after binning the deconvo-
luted image into lattice sites. (b) Deconvoluted image overlaid with underlying lattice.
(c) Original image overlaid with underlying lattice; sites identified as occupied are
marked by circles. Figures reproduced from [22].

corresponding to empty sites, and a second peak corresponding to filled sites. A
threshold is set at the minimum between the two peaks, and any site with counts
exceeding the threshold is identified as occupied. From simulations with images with
a realistic PSF and signal-to-noise, we find the the deconvolution algorithm identifies
sites with > 99.9% fidelity, for clouds with filling of ~ 0.20. An example of identifying

the occupation of lattice site is shown in Fig. 5-16c¢.

5.5.5 Estimating Image Fidelity

To determine the overall imaging fidelity, we image the same sample multiple times
in succession. We set the camera on frame transfer mode. In this mode, half of the
pixels are kept in a dark region during each frame. After each frame, the exposed
pixels are shifted to the dark region for read-out, while the initial pixels are cleared.
This allows one to image in quick succession without waiting for the full read-out
time, which is ~ 200 ms when reading out the full imaging area of 512 x 512 pixels.

For each frame, we identify the site occupation as described in Section 5.5.4. For

two consecutive frames, if a site that is occupied in the first frame disappears, we
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Figure 5-17: Loss rate and hopping rate during imaging. By imaging the same sample
multiple times, we obtain loss and hopping fractions, shown in blue circles and red
squares respectively. The corresponding averages are shown by blue dashed and red
dot-dashed lines. Here, the duration of each frame is 1 second; the loss and hopping
rates per second can be directly obtained. To disentangle parity-projected losses due
to high fillings, the filling of the sample used to obtain loss and hopping rates is ~ 0.2.
Figure adapted from [22].

identify this as a loss event. If an initially empty site becomes occupied, we identify
this as a hopping event. After normalizing to the total number of atoms, we obtain loss
and hopping rates. A typical loss rate and hopping rate curve is shown in Fig. 5-17.
The net loss rate is the difference between the single site loss rate and the hopping rate.
This rate is directly related to the lifetime determination in Section 5.4.3 measured
using standard fluorescent imaging. While longer imaging times improve the signal-
to-noise for each image, the loss and hopping rates rise proportionally to the imaging
time. The optimal imaging time is a balance between reconstruction errors that arise
from insufficient signal-to-noise and hopping and losses associated with long imaging
times. The optimal image time that allows a fidelity of ~ 95% is between 1 and 2
seconds. At these image times, the loss rate is ~ 5%, while the hopping rates are
~ 1%. Collisions with background gas is expected to account for 1 —2% of the losses.

An image after optimizing for imaging fidelity is shown in Fig. 5-18
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Figure 5-18: Single-Site image after optimization. The inset shows four atoms occu-
pying corners of a 3 x 3 region. Figure reproduced from [22].

5.5.6 Bounding Possibility of Density Dependent Losses

A possible imaging issue is density-dependent loss. It is possible that losses can
be enhanced when atoms are on neighboring lattice sites. To estimate this effect,
we measure the two-point correlation function, ¢g®(r), as a function of separation

distance r. The ¢ is defined as

g = (n(0)n(r)) (5.11)

If the initial distribution is completely random, one expects ¢‘® (r) = 1. This assump-
tion is valid, if the system is at high enough temperatures where the effect of fermion

statistics is irrelevant. This is the case for the samples used to characterize imaging.

On a lattice, the distance r in units of lattice spacing a is given by r = /n3 + nz,
where n; is the separation between two sites along direction 7. On a digitized image,
we compute go(r) with the following algorithm. First, we determine the average filling

(n), simply by computing the fraction of filled sites. Next, for every occupied site, we
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compute the distances to all other sites within the region of interest. These are added
to a histogram h. For the sites that are filled, we add the distances to a histogram
h'. These histograms can for example be binned with a separation of 1 lattice site.
To compute the two-point correlation function, we simply divide each bin in A’ by h,
and normalize by (n). For dilute high temperature samples produced for optimizing
single-site imaging, we find no detectable loss enhancement at short distances of
~ 1 lattice spacing, as shown in Fig. 5-19. In fact, as discussed in Section 2.1.2; at
low enough temperatures, where the thermal de Broglie wavelength is larger than
the lattice spacing, anti-correlation should appear at short distances. Measurements
showing anti-correlations for cold samples will be discussed in Chapter 6.
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Figure 5-19: Bounding distance-dependent losses with g(r). Shown in dashed is the
uncorrelated value of go = 1. At low temperatures, one expects that ga(r) < 1 at
short distances, reflecting the Pauli exclusion principle. Correlation measurements
showing this Pauli blocking effect is discussed in Chapter 6. Figure adapted from
22].

5.5.7 Estimating Raman Cooling Performance

To estimate the performance of our Raman cooling scheme, we infer the ground state
population via sideband spectroscopy. We first image the atoms for 3 seconds, and
leave the optical pumping light on for 100 us to ensure a large fraction of atoms

are in the dark state [9/2,—9/2). Subsequently, the = and z lattices are lowered to
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depths where all sidebands are well-separated. We then apply a 2ms pulse of Raman
light, where the two-photon frequency is swept over 10kHz. This is followed by a
resonant light pulse on the |F' = 9/2,mp = —9/2) — |F' = 11/2,m}, = —11/2) that
removes F' = 9/2 atoms. The lattices are then reramped to the imaging depth to
image the remaining atoms. Since the Landau-Zener sweeps with the Raman beams
are adiabatic, the ratio of the heights of the cooling and the heating sidebands of
each axis directly give the fraction of atoms in the motional ground state of that
axis (see Fig. 5-20). The product of the ground state fraction of all three axes gives
the fraction in the absolute motional ground state. We find that even after imaging,
we can achieve a motional ground state population of 72(3)% for [9/2, —9/2) atoms.
Note that the Raman cooling parameters were optimized for imaging fidelity rather
than ground state fraction.

The fact that a high ground state population fraction remains even after mea-
surement opens up new possibilities of initializing a many-body system. For exam-
ple, combining single-site imaging with site-resolved manipulation, one can perform
“Maxwell’s demon” type experiments, where the positions of the atoms are rearranged
after measurement [143]. Low entropy states and highly out-of-equilibrium states can

thus be prepared atom by atom.
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Figure 5-20: Sideband spectra after cooling. The sideband asymmetry indicates a
ground state population in [9/2, —9/2) of 72(3)%, even after imaging. Figure adapted
from [22].
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Chapter 6

Quantum (Gas Microscopy of

Metals and Insulators

This chapter describes our research on metals, Mott insulators, and band insulators in

the Fermi-Hubbard model. The results are summarized in the following publications:

L. W. Cheuk, M. A. Nichols, K. R. Lawrence, M. Okan, H. Zhang, and M. W.
Zwierlein, “Observation of 2D Fermionic Mott Insulators of *° K with Single-Site Res-
olution,” Phys. Rev. Lett. 114, 193001 (2016) [21]. Included in Appendix G.

L. W. Cheuk, M. A. Nichols, K. R. Lawrence, M. Okan, H. Zhang, E. Khatami,
N. Trivedi, T. Paiva, M. Rigol, and M. W. Zwierlein, “Observation of Spatial Charge
and Spin Correlations in the 2D Fermi-Hubbard Model,” Science 3583, 1260 (2016)
[20]. Included in Appendix H.

In this chapter, we first describe how quantum degenerate gases are produced near
the substrate, which allows preparation of Mott and band insulators in our apparatus.
We then discuss how to perform thermometry using site-resolved density profiles. We
also describe a recent experiment where we utilized the site-resolving ability of the
microscope to explore spatial correlations in the Hubbard model. By extending our
imaging technique to also resolve the spin of the atoms, we were able to measure

correlations in both the spin and charge sectors, which have revealed short-range anti
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ferromagnetism, the interaction and Pauli holes, and competition between doublon-

holon bunching and Pauli blocking.

6.1 Producing Quantum Degenerate Gases Near

the Substrate

In Chapter 5, we described how to image fermionic °K with single-site resolution
with high fidelity. We would like to apply this new ability to study interesting many-
body states such as Mott insulators, which occur only when the entropy of the system
is sufficiently low. In order to produce such low entropy samples, several additional
steps had to be taken. For the atomic samples used to implement single-site imaging,
we relied on a magnetic transport scheme described in Section 5.4.1. Atoms were
transported magnetically to the substrate and trapped by quickly ramping up the
5-degree beam. This process produced a large amount of heating since it was highly
non-adiabatic. In fact, the loading of the 5-degree trap was irreversible; atoms did
not survive a time-reversed ramp. The non-adiabatic nature of this scheme was
unavoidable since the cloud in the magnetic trap was much larger than the ~ 5 pum
spacing of the vertical lattice formed by the 5-degree beam. If the 5-degree beam
was not ramped up sufficiently quickly, atoms were lost due to contact with the
substrate. We briefly explore using a higher magnetic gradient to reduce the cloud
size. However, due to geometric constraints, the magnetic trap was not plugged
during magnetic transport, which led to short lifetimes due to Majorana losses. The
optimal gradient that we found yielded lifetimes of 200 ms, sufficient for a transport

time of 50 ms.

6.1.1 Moving the Magnetic Trap

In order to transfer more adiabatically into the 5-degree beam, three additional trap-
ping beams are used: a pair of movable ODT beams along —% and ¢, and an accordion

beam. These have been described in Chapter 4. Due to the limited range of move-
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ment of the ODT beams, the transport distance had to be minimized. We thus moved
the plugged quadrupole trap closer to the surface. We were, however, limited in how
far the trap could be moved up. First, one cannot move closer than the initial cloud
size prior to evaporation in the magnetic trap, which is on the order of ~ 1mm, as
found experimentally (see Fig. 6-1). The other constraint is the in-vacuum antenna,
shown in Fig. 4-2. The top portion of the in-vacuum antenna, formed by two square
loops oriented normal to ¢, is inconveniently located ~ 2mm below the substrate.

Thus, without changing the axis of the optical plug, the center of the magnetic trap

could only be moved to ~ 2mm below the substrate.
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Figure 6-1: Atom number versus magnetic trap position. The magnetic trap position
is measured from the vertical center of the chamber. 23Na atoms are intially held at

the vertical center of the chamber. The magnetic trap is moved upwards in 300 ms,
held for 350 ms, and moved back in 300 ms for imaging.

In order to move the quadrupole magnetic trap to ~ 2 mm below the substrate, we
apply current in the Feshbach coils to shift the magnetic zero. In this configuration,
the trap position is no longer determined by geometry alone. Relative noise between
the current producing the magnetic gradient and the current producing the offset field
causes the trap position to fluctuate in time, which results in heating. Initially, only
the Feshbach current was stabilized via feedback. The current for the quadrupole
coils was supplied by a Lambda ES-30-500 power supply on current control, without

additional stabilization. This current had 60 Hz harmonics that could have amplitudes
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as large as 1072, As a result, rapid heating of the atoms was observed. In fact, the
movement of the trap center due to current noise was directly measurable, as shown in
Fig. 6-2. To reduce the heating, the current of the quadrupole coils was also stabilized
with feedback. Although residual heating due to trap movement was still observable
after stabilization, the heating rate was reduced to a tolerable level of 280nK/s, as

shown in Fig. 6-3.
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Figure 6-2: Trap position of offset quadrupole magnetic trap measured by in-situ
imaging of *Na atoms. Here, the current producing the offset field was stabilized,
but the current producing the quadrupole magnetic field was not. The timing was
triggered to the AC line voltage. Motion of tha atoms at 60 Hz harmonics with
amplitude of ~ 5 ym were observed.

Moving the magnetic trap, however, meant that the optical plug also had to be
moved upwards from the vertical center of the chamber by 7.5mm. Here, it was
important to align the plug such that it did not hit the in-vacuum antenna (see
Fig. 4-2). In fact, the vacuum pressure rose rapidly when the antenna was hit by the

plug beam.

6.1.2 A New Transport Scheme

After the magnetic trap was moved to ~ 2 mm below the substrate, the next step was
to transport the atoms to 7 um below the substrate. In order to only load the desired

layer of the 5-degree beam, one must compress the cloud to a vertical size of less than
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Figure 6-3: Heating rate in offset quadrupole magnetic trap measured via time-of-
flight imaging of 2Na atoms. Shown in red squares is the temperature as a function
of wait time, when the currents producing the offset magnetic field and the magnetic
gradient were both stabilized. The dashed red line is a linear fit to the data, which
gives a heating rate of 280 nK/s. Shown in blue circles is the case when a ground loop
was intentionally introduced. The dashed blue line is a linear fit to the data, which
gives a heating rate of 6.2 uK/s.

the vertical spacing of the layers (5 um) before loading. Because of this small length
scale, optical transport is the only viable transport scheme. In our apparatus, optical
transport is non-trivial, since any beam that passes close to the substrate will be
partially reflected, which would interfere with the incoming beam to form a vertical
lattice that inhibits further transport.

In light of these issues, we implemented a two-stage optical transport scheme. The
first stage transports atoms from ~ 2mm below the substrate to 40 yum below the
substrate. We load atoms from the magnetic trap into the movable crossed dipole
trap formed by two beams along —Z and 7, as described in Section 4.5.3. Since these
two beams have vertical waists of 40 ym, they can be moved to ~ 40 um below the
substrate before the vertical lattices resulting from the substrate reflections become
significant.

As described in Section 4.5.3, the positions of the two ODT beams are controlled
by two AODs, whose frequencies can be dynamically changed. When the frequencies

are changed, the angles of the beams relative to the z-y plane remain constant, while
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the intersection of the beam with the vertical imaging axis can be tuned from 2mm
below the substrate to directly on the surface. Ideally, one would like to use a shallow
beam angle in order to maximize the lattice spacing of the vertical lattice formed by
the substrate reflection. For the x beam, the angle of 1.3° was chosen with this in
mind. However, along ¢, such an angle is not possible due to limited optical access.
As shown in Fig. 4-2, the in-vacuum antenna prevents shallow angles from being
accessible. To avoid hitting the antenna at any point during the transport, the angle
of the y ODT beam is set to 4.8°. Although this is sub-optimal, simulations show
that with the appropriate intensity ramps, the transport remains efficient. Although
the y ODT beam does not directly hit the antenna, at high beam powers, we observed
a measurable increase of the vacuum pressure at certain points of the transport. We

thus limited the power of the y ODT beam during transport.

Figure 6-4: ?3Na condensates in the crossed ODT before optical transport. Shown
are TOF images of 2Na atoms in the crossed ODT, imaged along the - imaging
path. The bimodal distribution indicates the presence of a condensate. From left to
right, the final trap depth is successively lowered, leading to increasing condensate
fractions.

In order to optimize the first stage of optical transport, we used a condensate of
2Na atoms. #*Na in |2,2) was first evaporated in the offset quadrupole magnetic
trap. After the atoms are loaded into the crossed optical dipole trap, a microwave
sweep transferred the atoms to |1,1). The ODT depth was then lowered to produce
a 2Na condensate, as shown in Fig. 6-4. Subsequently, the AOD frequencies were
ramped linearly in time, and the endpoints for various ramp times were optimized for
condensate numbers. While losses during transport were observed, condensates can be
moved to 40 um below the surface. Optimizing for the final number of condensed **Na

atoms resulted in a transport time of 1800 ms. Due to the presence of the antenna,
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we could only image up to ~ 1.7 mm below the substrate with the —¢ imaging beam,
or up to ~ 0.5mm below the substrate using the bouncing imaging along —gy. As
a result, we could not directly image the region from ~ 0.5mm to ~ 1.7mm below
the surface. Nevertheless, by using the fact that the condensate drops due to gravity,
for longer expansion times, atoms could be observed as they drop into view below

~ 1.7mm, even when they were moved up to 160 ym from the substrate (Fig. 6-5¢).

In order to move the atoms closer than 40 ym from the surface, we implemented
a second stage of optical transport with the accordion beam. The accordion beam
is aligned to reflect from the center of the substrate, and its incident angle can be
dynamically tuned with a galvo mirror. As described in Section 4.5.2, this beam
propagates along —2z, and its angle relative to the x-y plane is tuned from 1.2° to
5.2°. At ~ 1.2°, the second layer of the vertical lattice formed by the accordion beam
occurs at ~ 40 pum, while at ~ 5.2° the second layer is moved up to ~ 8 ym, and
sufficiently overlapped with the second layer of the 5-degree beam. At the initial
angle, the lattice spacing is large, allowing a large fraction of the atoms to be loaded
into a single layer. By adiabatically increasing the accordion angle, the atoms are
simultaneously compressed vertically, and moved upwards to substrate. One issue
with this transport scheme is that the accordion beam provides little confinement
along . Thus, during the accordion transport, the y ODT beam is kept on at low
powers. Although this produces a competing vertical lattice, simulations show that
for a range of intensities, transport is not inhibited and remains efficient. With some
optimization, we were able to produce condensates in the accordion, as shown in
Fig. 6-6.

After the final stage of optical transport with the accordion, we transfer the atoms
into the 5-degree beam. After optimization, we were able to obtain 23Na condensates
in the 5-degree beam, as shown in Fig. 6-7. To confirm that atoms have been trans-
ferred to the right layer of the 5-degree beam, we switched from 23Na to “°K. Using the
same transport scheme, %K atoms were loaded into the 5-degree beam, and “slicing”
spectroscopy was performed. By comparing the slicing response with the previously

measured slicing frequency of the second layer, we were able to verify that only the
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Figure 6-5: 2Na condensate after transport with the crossed ODT to 160 um below
substrate. (a) In-situ image of the condensate imaged along the —¢ bouncing imaging
path. (b) Image of the condensate along the g “bouncing” imaging path after 4.5ms
time-of-flight. (c¢) Condensate falling into view of the —¢ imaging path after 17.5ms
of TOF. The top edge of the field-of-view is limited by the in-vacuum antenna.

second layer was loaded, as shown in Fig. 6-8.
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Figure 6-6: Transport using the accordion beam. The ?*Na atoms were first loaded
into the second antinode of the vertical lattice formed by the accordion beam. We
set the angle of the accordion beam such that the second anti-node is positioned
40 pm below the substrate. Atoms are then imaged along the -g bouncing imaging
axis, which produces two mirror images due to the reflection from the substrate. The
midpoint between the two mirror images corresponds to the surface of the substrate.
(a) The angle of the galvo mirror is ramped to different values corresponding to
different distances below the substrate. From top to bottom, the locations of the
atoms are 40 pm, 26 pm, 16 pm, and 7.3 ym from the substrate respectively. (b) After
ramping to 7.3 ym, the galvo mirror angle is unramped to the initial position, where
the second anti-node is 40 um away. (c¢) Shown is a TOF image of atoms forming a
condensate after being transported to 7um below the surface and subsequently back
to their intial location 40 pm below the substrate in 400 ms.
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Figure 6-7: 2*Na condensate in 5-degree beam after optical transport. After the atoms
are compressed and moved upwards to ~ 7 um from the surface, they are transferred
into the 5-degree beam. (a) In-situ image of *Na atoms loaded into the second layer
of the 5H-degree beam, 7pum from the substrate. The imaging path here is the y
bouncing imaging path. Along this path, the imaging resolution is not high enough
to resolve the two mirror images, when the atoms are closer than ~ 10um from the
surface. (b) After 4.5 ms of TOF, a bimodal distribution is observed, indicating the
presence of a condensate after the entire optical transport process.
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Figure 6-8: Slicing spectrum in 5-degree beam after loading “°K from the accordion
beam. Shown in red squares is a slicing spectrum of “°K after transfer into the 5-degree
beam. A microwave sweep transfers atoms into F' = 7/2, which are subsequently lost
due to collisions with remaining F' = 9/2 atoms. Shown in blue circles is a slicing
spectrum obtained with magnetic transport and direct transfer into the 5-degree
beam, after the second layer has been selected. Atoms are predominantly transfered
from the the accordion to the second layer of the 5-degree beam.

6.1.3 Evaporation of a Single Layer

Although we could transport 2*Na BECs at 7 um, creating a gas quantum degenerate

fermions proved more difficult. Since the transport process causes heating, we decided
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to only partially cool °K before the ODT transport. Further evaporation is performed
after the atoms are moved near the substrate, which recools the atoms after they are
heated during transport. A final stage of evaporation is also need in order to reach
appropriate system sizes of ~ 1000 atoms. A transport sequence similar to that used
for 2Na allow ~ 10° atoms to be transferred into a single layer of the accordion and
moved to 7 um below the substrate. At the end of the two-stage optical transport, the
atoms are held vertically by the accordion beam and transversely by both the y ODT
beam and the dimple beam, which was described in Section 4.5.4. At this point, an
initial stage of evaporation is performed by lowering the power of the accordion beam.
The powers of the accordion beam and the y ODT beam are subsequently ramped
down, while the 5-degree beam is ramped up. At this point, the atoms are confined
in all directions by the 5-degree beam, which has sufficient trapping along z, the
direction of propagation. Although the 5-degree beam is sufficient to trap the atoms
on its own, evaporation in this beam is not efficient due to the low confinement along
the propagation direction. We thus evaporate in a trap formed by a combination of
the 5-degree beam and the dimple beam.

One important aspect of evaporation is that atoms must be able to leave the trap.
For a 2D layer, it is easiest for atoms to escape radially in the z-y plane, as the
vertical direction is tightly confining. We thus chose to apply a magnetic gradient
in the z-y plane. This is done by applying current in the bias field coil along z,
which also produces a magnetic field gradient along z in addition to a bias field. By
lowering the powers of the dimple and the 5-degree beams simultaneously, we were

able to produce quantum degenerate samples of 2-component Fermi gases.

6.2 Site-resolved Profiles of Metals and Insulators

With the new transport scheme and evaporation in the dimple trap, we were able
to produce low entropy samples for quantum gas microscopy. In order to access the
different states of the Fermi-Hubbard model, one needs to tune both the interaction

parameter U/t and the chemical potential p. As discussed in Section 2.2.1, Feshbach
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resonances can be used to tune the s-wave scattering length a, and consequently the
interaction energy U. Alternatively, one can increase the relative effect of interactions
by reducing the tunneling amplitude ¢, which can be suppressed by increasing the
lattice depth. In principle, the lattice depth also tunes the interaction parameter U
due to modification of the Wannier functions. The main effect of changing the lattice
depth, however, is in changing ¢, which can be varied over many orders of magnitude.

For the studies described here, the parameter U/t was tuned using the lattice depth.

In order to tune the chemical potential, we make use of the fact that the system
is trapped. Under the local density approximation, this leads to a spatially varying
local chemical potential through the sample, with the trap center attaining the highest
local pu. Thus, low values of u can always be reached at the edges of the trap. To
tune the maximum value of y at the center of the trap, we use the dimple beam to
vary the radial confinement. By increasing the power of the dimple beam, the radial

confinement is increased, and a higher maximum chemical potential can be reached.

As described in Section 2.3.2, the three prototypical states in the Fermi-Hubbard
model are the metal, the band insulator, and the Mott insulator. The latter two have
signatures that are particularly suited for site-resolved detection with a microscope.
In a band insulator, the occupation of each lattice site is exactly two, while in a Mott
insulator, it approaches unity in the limit of large U/t, as doublons become energet-
ically forbidden. These two insulating states are realized with different parameters.
The band insulator occurs when the chemical potential is higher than any energy scale
(u > U,t,T), but still smaller than the bandgap, in order to remain in the single-
band limit. The Mott insulator on the other hand is reached when the interaction
energy U becomes much larger than all energy scales except the bandgap, U > ¢, T,
and the system is at half-filling. Experimentally, one can observe band insulators in
the center of the trap at high radial confinements, and moderate values U/t. To ac-
cess the Mott insulator, one again needs a relatively large radial confinement in order
to obtain a chemical potential corresponding to half-filing. Additionally, in order to
suppress doublons, it is beneficial to use a high value of U/t, which can be achieved

experimentally at deeper lattice depths (f/O > 8). Outside of these two regimes, one
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generically observes a metallic state.

By tuning the lattice depth along with the intensity of the dimple beam, we
were able to observe metals, band insulators and Mott insulators with single-site
resolution through the microscope, as shown in Fig. 6-9. Using the deconvolution
algorithm described in Section 5.5, we can identify the occupation of each lattice site,
which we then use to generate site-resolved profiles, as shown in Fig. 6-9. From these
profiles, one finds that when the interactions are strong (U > t), double occupancies
are suppressed, and when the global chemical potential is sufficiently high, a large
portion of the system contains exactly one atom per site, as one would expect for a
Mott insulator. When the global chemical potential is raised by increasing the radial
confinement, the imaged profiles show a dark central region. This is consistent with
the formation of a band-insulating region in the center of the trap, which contains
doubly occupied sites. These sites appear dark since our imaging suffers from parity-
projection. When two atoms reside in a single lattice well, they are both lost quickly
due to light-assisted collisions during imaging. In other words, the measured signal
reveals only the parity of the site occupation.

Before we describe how we quantitatively characterize the site-resolved profiles,
we describe a few properties of this parity-projected signal. As we will show, the
parity-projected signal for spin-1/2 fermions is in fact the magnitude squared of the
local magnetic moment on a site. This originates from the fact that for a spin-1/2
system, one can have at most two atoms on a single site, due to the Pauli exclusion
principle. Note that this is not true even for a single-component Bose gas, since the

occupation of a site is unbounded.

6.2.1 The Local Moment and Its Properties

To understand why the parity-projected signal directly measures the magnitude of
the local magnetic moment, we first observe that for spin-1/2 fermions, the parity-

projected density can be described by the operator

A

n; — 2d;, (6.1)
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Figure 6-9: Site-resolved images of metals and insulators. Shown in (a), (b) and
(c) are site-resolved images of “°K atoms trapped in a 2D square lattice. (d), (e)
and (f) are the corresponding reconstructed site occupations. In (a,d), U/8t = 0.33,
to/U = 0.52, and kT /U = 1.46. A metallic state is observed. In (b,e), U/8t = 12.3,
wo/U = 0.46, and kT /U = 0.09. A Mott insulator is observed. In (c,f), U/8t = 2.6,
wo/U = 143, and kgT/U = 0.18. A band insulating region is observed in the
center of the trap. Here, o denotes the chemical potential in the center of the trap.
Temperatures and chemical potentials are obtained from fits of the radially averaged
profiles to NLCE data for the metallic and band-insulating cases, and from a fit to
HTSE data for the Mott-insulating case. Figures reproduced from [21].

A~ ~ ~ 7 ~ ~ . ~ 2 N .
where n; = ny; + 0y, and d; = N0y, Since (N,;)° = N, for fermions, we can
rewrite this as

g+ Ny — 2d; = (g — g )" = 2 (6.2)

2,0

where mzz is the magnitude squared of the local magnetic moment, also known as

the local moment.

When there are well-formed local moments, one can approximately describe the
system with an effective spin model. For example, in the Fermi-Hubbard model,

magnetic moments are well-formed when U > 8t. In this limit, the charge degree of
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freedom is frozen, and one can describe the spin degrees of freedom by the Heisenberg
model. To quantify whether or not local magnetic moments are well-formed, one can
examine the quantity

(1 51z )0 = () — (m2)°, (6.3)

which measures the quantum projection noise of the observable mgz The operator

(m?,) can be written as

AN\ 2
ity = (A + Ay —2d;)
== TAL?RZ + ﬁf,z + 46212 -+ QTAlTﬂ"ﬁ,J”Z‘ - 4CZiTAlT7@' - 4621‘7?%,1'

= g+ iy — 2d; =Ml (6.4)

We thus obtain the operator identity m‘;?i = mzz The quantum projection noise is
therefore given by (h?;) (1 — (/m2;)) and is zero when (/2 ,) is either 0 or 1. More
generally, the operator identity indicates that measurements of any observable that is
constructed out of the local parity-projected density mgz will not yield any additional

information.

6.2.2 Thermometry Using Site-Resolved Images

To quantitatively analyze the site-resolved profiles, we note that the atoms are trapped
in a potential V'(r), which can be approximated by a radially symmetric harmonic po-
tential V (r) = %mw2r2. Under the local density approximation, one defines spatially
varying local chemical potential u(r) = po — V(r), where i is the global chemical
potential. Thus, because of the trapping potential, different states can coexist within
the same sample. For example, when g is large enough, the center of the trap can
be band-insulating, while the outer edges, which are at lower densities, are metallic.
Since the trap is radially symmetric, the resulting local moment profiles are also ra-
dially symmetric. Radial averaging of reconstructed profiles thus provides (rm?(r)),

z

which can then be related to the local chemical potential p(r). In principle, one can
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deduce the temperature by fitting (m?(r)) to theory, provided that theory is available.
In the atomic limit of U/8t > 1 and kgT'/t > 1, one can use the high-temperature
series expansion described in Section 2.3.3. For moderate interaction strengths of
U/8t ~ 1, NLCE data gives reliable results down to temperatures of kgT'/t ~ 0.6 for
all fillings.

In order to perform thermometry, one must first determine the Hubbard parame-
ters U and t. To calibrate ¢, the depth of each lattice is measured through modulation
spectroscopy. In modulation spectroscopy, we determine the resonant frequencies of
exciting atoms to higher bands when modulating the lattice intensity. We observe
an increased width of the sample when the modulation frequency is resonant with
inter-band transitions. Comparing the measured resononance frequencies with a band
structure calculation then allows one to calibrate the lattice depth Vj for each direc-
tion. The Hubbard parameter ¢ can then be computed from the lattice depth Vj
as described in Section 2.1.2. Note that for a Fermi gas, a large number of quasi-
momentum states in the lowest band are occupied. This leads to broadening of the

resonances, as shown in Fig. 6-10.

To obtain U, we first prepare Mott insulators in the atomic limit (U/(8t) >
1), where almost every site has a single atom. We then modulate the intensity of
either of the lattice beams along & or . In the atomic limit, a doubly occupied
site requires an additional energy U compared to a singly occupied site (see Fig. 6-
11a). Since lattice modulation modulates the tunneling amplitude, one can induce
tunneling of a spin ¢ atom to a neighboring site with a spin —o atom. In order to
conserve energy, the transfer occurs only if the modulation frequency equals U/h. As
shown in Fig. 6-11b, when this occurs, we observe a reduction in the parity-projected
density, which indicates that doublons have been created. The typical energy of U
is ~ h x 1kHz, which is separated by roughly an order of magnitude from the band
excitation frequencies at typical lattice depths. We note, however, that this method
of calibrating U is reliable only when U/t > 1 is large, since the resonance condition
of v = U/h is broadened, due to tunneling, by an amount ¢/h. At smaller values of

U/t, we thus determine U through a band structure calculation using the calibrated
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Figure 6-10: Band transition frequencies as a function of lattice depth. Shown in
solid blue lines are the maximum and minimum transition frequencies versus lattice
depth for transfer of atoms to the first excited band. In red dashed lines are the
corresponding frequencies for transfer of atoms to the second excited band. Also
shown, using the black dot-dashed line, is the harmonic approximation. The harmonic

approximation AFE = hw = 2F R\/70 is corrected by the first order perturbation shift
of —Fg. Note that for a Fermi gas, a large fraction of quasi-momentum states are
occupied, which implies that the responses will cover the frequency range between
the maximum and the minimum. It thus becomes difficult to calibrate the lattice at
low depths. One can calibrate the lattice at higher depths where this is less of an
issue, and subsequently scale the depth according to the lattice beam intensities. One
also observes that although the transitions to the first excited band are suppressed at
large depths, they have a smaller frequency spread. We therefore use these transitions
for lattice calibration at intermediate depths.

lattice depths.

Using the calibrated values of U and ¢, we then fit the radially averaged profiles to
NLCE theory, with T'; o and w as free parameters. We find good agreement between
the observed profiles and theory, an example of which is shown in Fig. 6-12b. An
alternative measurement of the degeneracy, rather than temperature, is the entropy
per particle. Although we cannot directly measure the entropy, by using the fitted
temperatures and chemical potentials, and assuming the validity of the local density
approximation, we can use theory to extract the entropy profile of the sample. As
shown in Fig. 6-12d, the entropy per site in the band-insulating region is suppressed,

indicating that the number of available states is reduced.
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Figure 6-11: Calibrating U via lattice modulation. (a) In the atomic limit where
U/t > 1, the system is well-described by the occupation number of each lattice site.
A double occupancy costs an additional energy of U. Therefore, in order for lattice
modulation to drive a spin ¢ atom onto a neighboring site with a spin —o atom, the
modulation frequency must equal U/h. Note that the response is broadened by t/h,
corresponding to the width of the upper Hubbard band. (b) A typical modulation
spectrum. Here, Vy = 10 and the scattering length is at the background value of
a = 174ay [120].

Earlier, we discussed some properties of the local moment, since it is the signal
that we directly observe. One conclusion that we found was that the variance in the
local moment is related to its average value, and therefore does not yield additional
information. This can be checked experimentally by measuring the fluctuations of
the moment two separate ways. The first way is to make use of the property that
the variance of the local moment is precisely the quantum projection noise given by
Eq. (6.3). The variance can thus be obtained from the average local moment via

(M) (1 — (2

2,0

)). The second way to determine the fluctuations is to rely on the
radial symmetry of the system to directly compute the variance of the measured
moments at a given radius. Although the radial symmetry is only approximate, we

find that the variance obtained using the two different methods agree, in accordance

168



Moment

(o]8 ‘ ‘ ‘ ‘ 999 00%00

0. 5 10 15
Radius(Sitey

(b)

y 0.2 J,? g
S
c>5 0.1 [9)
<
Mady
o . Ullexlg o N
0. 5 10 15 0. 5 10 15
Radius(Siteg Radius(Siteg

(c) (d)

Figure 6-12: Radially averaged profile of a sample with coexisting metallic, Mott
insulating and band-insulating regions. The Hubbard parameters are U/8t = 2.6(1).
(a) The bare image overlaid with the underlying lattice; a radial averaging contour is
shown schematically. (b) The radially averaged local moment versus radius. Shown
in the solid blue line is a fit of to profile to NLCE data. The fit yields a global
chemical potential of py ~ 1.4U and a temperature of kgT'/t = 3.7. (c) Variance
of the local moment. Shown in blue circles is the experimentally measured variance,
which assumes that sites at equal radii are equivalent. Shown in red squares is the
variance computed from the average moment. The error bars for the second method
are not shown. (d) Entropy per site as a function of radius, obtained from NLCE
theory using the fitted parameters. The average entropy per particle, 0.99(6) kg, is
shown by the dashed black line.

2

with the operator identity m?, = /2.

One can determine the global chemical potential i by fitting the measured profiles
to theory. For the parity-projected signal, the particle-hole transformation discussed

in Section 2.3 allows one further simplification, as long as the filling in the trap center
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exceeds (n;) = 1. Consider the local moment under a particle-hole transformation:

~

mii = 'fLT,i + ﬁi,i — QCZZ — 2 — (TALT,Z' + fb\w‘) — 2(1 — ’fbmz)(l — fb\w‘)
— 2 — (Ags + y) — 2(1 — Py — Ry ) — 2d;

— ﬁT,i -+ ﬁJﬁi — 2dAZ = mQ (65)

20"

We find that the local moment is invariant under a particle-hole transformation, which
implies that the moment must be symmetric about u = U/2. Therefore, in a trapped
system where g > U/2 in the trap center, the location of the maximum moment
determines where the local chemical potential pu(r) = U/2. This also corresponds
to the half-filling point. One can thus identify the half-filling point from the local
moment, without having measured the total density directly.

2

) occurs at half-filling, it can be

We also note that since the peak value of (m
used as an independent thermometer. This method of thermometry, however, has
two disadvantages. One drawback of using the moment is that (m?) saturates when
kgT =~ U as the charge degrees of freedom become frozen, and is increasingly insen-

sitive at lower temperatures. Another disadvantage is that unless the interactions

2

) can be a multi-valued function of temperature [103]. In

are sufficiently strong, (1
particular, for a fixed U/t, certain values of (mm?) at half-filling can correspond to two

different temperatures.

To understand the non-monotonic behavior of the local moment as a function
of temperature, we examine how the formation of moments affects the kinetic and
interaction energies. In the atomic limit (U > t), the formation of local moments is
favored. To lowest order in ¢, the interaction energy U suppresses double occupancies,
while the tunneling energy ¢ favors delocalization of particles and thus suppresses
the formation of local moments. This suggests that, starting at kg7l > U, the
local moment increases as the temperature is lowered towards kg1 ~ U. At lower
temperatures, one must take into account effects from super-exchange, which lower
the energy per nearest-neighbor pair by ~ 4¢?/U. Since the super-exchange energy

is maximized with well-formed moments, super-exchange also favors the formation of
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local moments, and therefore competes with the kinetic energy, which favors reduction
of local moments. Since the kinetic energy is ~ ¢, the ratio of these two competing
terms is oc (4U/t)?. At second order in t/U, local moments are favored at strong
interactions, while delocalization is favored at lower interactions. Consequently, for
moderate interactions, at the half-filling point (n;) = 1, the local moment first rises
as the temperature increases before decreasing again at high temperatures. The two
relevant temperature scales where these changes occur are kg1’ ~ t? JU and kgT ~ U.
At high temperatures where kg1 > U, a single site has equal probabilities of being
empty, filled with either an 1 or | atom, or doubly occupied. Thus at sufficiently high

temperatures, (m?) = 0.5.

6.3 Charge and Spin Correlations in the Fermi-
Hubbard Model

One unique capability of quantum gas microscopes is their ability to directly measure
spatial correlations down to a separation of a single lattice site. In this section,
we describe measurements of both spin and charge correlations in the Fermi-Hubbard
model as a function of filling. In the language of electronic systems, varying the filling
away from half-filling (n = 1) translates to doping the system with electrons or holes.
The Hubbard model, while simple in form, is not solved except for several limited
cases, one of these being the case of half-filling, where at low temperatures, the system
is a Mott insulator with anti-ferromagnetic order. The complete phase diagram is not
known precisely, since the model remains unsolved due to the “fermion sign problem.”
Nevertheless, generically, strongly correlated materials display a variety of phases in
close proximity to the Mott insulating phase. For example, in high-T, cuprates, an
unconventional d-wave superconducting phase, a pseudo-gap phase, and a “stripe”

phase, can all occur upon doping of a Mott insuator [83, 28|.

To emphasize the competition between the kinetic energy and the interaction

energy, we study the regime in which they are of similar sizes. Note that the kinetic
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term favors delocalization, and can be diagonalized in a basis of delocalized Bloch
waves. On the other hand, the interaction energy contains only on-site terms and is
diagonalized by localized states. We therefore focus on the case of U/t ~ 8 for the

2D square lattice, where these two terms are of the same order.

6.3.1 How to Measure Spin Correlations

As discussed previously, Raman imaging is not spin-sensitive, and measures the
parity-projected site occupations. In order to access spin correlations, one must
therefore implement a spin-sensitive detection scheme. In this section, we describe

how this can be accomplished. We first define the spin correlator <5’Z7i, Sz,j)C:

(820 Sz5)c = > (o i) e = (i ioj)c) (6.6)
e
where Sz,i = %(TAZTJ' — ﬁi,z)‘
Although we cannot determine the spin of the atoms using the signal obtained
via Raman imaging, we can remove one spin state before imaging the atoms. During
this spin-selective removal process, doublons are also lost. The measured signal after

spin removal is thus described by the operator

~

Poi = Noyi — di, (6.7)

when atoms of spin —o are removed. The spatial correlations of the spin-removed

signal are then given by

(Doir Do) 0 = (Rgis i) — (i, di)o + (di, dj) e (6.8)

2

2,07

We can compare this to the moment-moment correlator (1

by

A 2 . . .
m? ;)c, which is given

(2 2 ) = (i, i) + Hdi, dj)o — 200, dj) o — 2(di, ) e (6.9)

2,19
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In order to remove the <ci,, dj>c term, one can use the combination
22 paz»pag <mz Z7m2,]>C (610)

Conveniently, all other terms containing d; are also cancelled, and this combination

is in fact proportional to the spin correlator <§m, S’Z,j>c

QZ pU“pUJ <A “,mij)c = Z naz,”a] <ﬁi7ﬁj>0
= Z nazanaj <ﬁ0,i7ﬁ*07j>0]
o

/\

= 4(S.,,5.)¢ (6.11)

This implies that separately averaged correlation maps from two spin-removed p, ;
images, combined with the averaged correlation map obtained from the local moment
mzl images, gives the spin correlator. The validity of this approach relies on the fact
that doublons are removed when we remove one spin state o,. This can be verified
by measuring the effect of spin removal on band insulator images. The mechanisms

behind this type of spin imaging will not be discussed here, and we defer an in-depth

discussion to future dissertations.

To quantify the spin correlations, we define the spin correlator at a separation of

one lattice site Cy(1):
Cs(l) = Z <‘§3,i7 3(227j>c- (612)

Using the described spin-imaging procedure, we can obtain radially averaged pro-
files of the Cy(1). A way to produce theory-independent curves is to plot the measured
Cs(1) versus the average measured moment, as shown in Fig. 6-13a. We observe that,
at a separation of one site, the spin correlations are negative, suggesting the pres-
ence of antiferromagnetic correlations. Nevertheless, one must keep in mind that the
non-interacting Fermi gas on a square lattice also displays negative correlations at a
distance of one site, as discussed in Section 2.1.1. In the case of the non-interacting

gas, this is simply a manifestation of Pauli-blocking. Therefore, to demonstrate the
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effects of interactions, we must compare the measured correlations with those of the
non-interacting Fermi gas. As show in Fig. 6-13b, a comparison does indicate that at
lower temperatures, the measured correlations are enhanced, confirming the presence

of a short-range, effective anti-ferromagnetic interaction.
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Figure 6-13: Nearest-neighbor spin correlator C(1). (a) Cs(1) as a function of the
moment (mm?,) at U/t = 7.2. For comparison, NLCE results are shown by the green

2,0

lines while DQMC results are shown by the gray triangles, for two temperatures
kgT/t = 0.89 and 1.22. (b) C4(1) as a function of temperature kgT'/t. The results
for the non-interacting gas is shown by the gray dotted line. The solid blue line shows
NLCE results, while the gray triangles show DQMC results. Figures reproduced from
20].

Since the density of the trapped sample monotonically increases from the edges of
the trap towards the center, we can apply the local density approximation to obtain
the values of the correlators at different chemical potentials p. As shown in Fig. 6-
13a, we find that as the moment decreases, the spin correlator Cy(1) also weakens
monotonically. With the help of NLCE and DQMC calculations, we can convert the
moment into a filling. In the language of electronic systems, we observe a weakening

antiferromagnetic correlations as the system is doped away from half-filling.

6.3.2 Charge Correlations as a Function of Filling

Although the observed negative spin correlations at separation of one site were not
unexpected, the measured correlations in the charge sector revealed some rather un-

expected features. Specifically, the moment-moment correlator at a separation of one
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site, C, (1), which we define as

Cn(1) = 1 Z <mz,i7mz,j>07 (6.13)

J€nn;

displayed a change in sign. Note that C,,(1) is a type of charge correlator, as it is

not sensitive to spin.
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Figure 6-14: Nearest-neighbor moment correlator C,,(1) as a function of moment
(m2;) at U/t = 7.2. For comparison, NLCE results are shown by the green lines while
DQMC results are shown by the gray triangles, for two temperatures kg7'/t = 0.89
and 1.22. A sign changed is observed is observed around (im?;) = 0.7. Figure from
20].

Naively, one might expect that as we dope the system away from half-filling,
charge correlations should weaken as the sample becomes dilute. However, as shown
in Fig. 6-14, we observe that, as a function of moment (and hence filling), C,,(1) is
non-monotonic, and in fact changes sign at a local moment of ~ 0.7. At low values
of the moment, corresponding to low fillings, C,,(1) is negative and becomes more
negative as the filling is increased, until a filling of ~ 0.25. It then increases as a
function of filling, changing sign and eventually becoming slightly positive near half-
filling. This behavior is in stark contrast to that of the spin correlator Cs(1), which
weakens monotonically away from half-filling, as shown in Fig. 6-13a.

In order to understand how this non-monotonic behavior arises, we first consider
the low filling limit, where the doublon fraction is low. Here, one can make the

approximation that (m?;) ~ (7;). Thus moment-moment correlations are simply
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density-density correlations at low filling. As discussed in Section 2.1.1, Pauli-blocking
leads to negative density correlations even in the non-interacting Fermi gas. Repulsive
interactions should only enhance this effective repulsion, making the correlations more
negative. In order more clearly see this effect, we normalize the correlator C,,(1) by

the average value of the local moment to obtain the correlation function go(1), which
is defined by
_ (1)
92(1) = : (6.14)

(2 ;) (2 ;)
Normalized in this fashion, we find that g»(1) monotonically decreases as the filling is
lowered, as shown in Fig. 6-15a. Comparing the result with the non-interacting case,

we find that repulsive interactions enhance the negative correlations.

One way to interpret this behavior at low fillings is to note that g»(1), as a function
of decreasing density, can be roughly thought as a measure of the density correlation
function gs(kpr) of a Fermi gas at increasingly shorter distances kpr. That is, mea-
suring g(1) as one lowers the filling is roughly equivalent to measuring kpr at shorter
and shorter distances, as kr decreases with density, while r is fixed at a separation
of one site. More specifically, for a free 2D Fermi gas with half a particle per lattice
site, kp = v2m/a o< \/n. One can thus read off go(1) as a function of filling from
Fig. 2-1 in Section 2.1.1. One can therefore interpret the negative correlations at low

fillings as the first direct observation of an interaction-enhanced Pauli hole.

To understand the opposite limit of half-filling, where (n;) = 1, it is useful to
consider the various contributions to the moment-moment correlator. Near half-
filling, one can no longer make the assumption that the doublon fraction is low. In
fact, as we shall see, the doublons play an important role. To clarify the various
different contributions, we define the hole operator lAzm» = 1 —n,;. Physically, this is
motivated by the fact that, near half-filling, the charge degree of freedom is essentially
frozen, as the majority of sites are filled with one particle, and interactions suppress
the occurence of doublons. It is thus convenient to think of the system as a mobile
gas of holes and doublons. While we cannot image the density directly to observe

holes themselves, we can define a similar observable, the anti-moment, described by
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Figure 6-15: ¢g5(1) and g»(1) as a function of doping. (a) Shown is g»(1), the 2-point
correlation function for moments at a separation of one lattice site, as a function of
moment and filling. Shown in dashed is the result for the non-interacting Fermi gas
as a function of filling. The suppression at low fillings can be interpreted as a direct
observation of an interaction-enhanced Pauli hole. (b) Shown is g»(1), the 2-point
correlation function for anti-moments at a separation of one lattice site, as a function
of moment and filling. g»(1) emphasizes the bunching property of anti-moments near
half-filling. Shown in the inset is an exemplary image that shows pairs of neighboring
anti-moments, which arise due to doublon-holon bunching near half-filling. Figures
reproduced from [20].

the operator 1 — 7m?2. This operator directly measures the empty sites after parity-

projection, and is small near half-filling.

Having defined the anti-moment, we first note that the anti-moment spatial cor-
relator ((1 —7m2,;)(1 —m?;))c is equal to the moment spatial correlator (/2 ;72 ;)¢
We can define an analogous ¢, function of the anti-moments by normalizing C,,(1)

with the anti-moment density. This function go(r) at a separation of one site is then

<mz,z’7 mi,j>0

(I —mZ){1—m2,;)’

G2(1) =

(6.15)

where we restrict to nearest neighbor pairs ¢, 7. This quantity is shown in Fig. 6-15b
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as a function of the measured moment. One observes a large enhancement of g»(1)

above unity near half-filling, indicating that the anti-moments strongly bunch.

Keeping in mind that anti-moments can be either holes or doublons, we separate
the moment-moment correlator into its various components.

(w2 ) = (hihj)o + 4(did;) e + 2(dih;) o + 2(hid;)c. (6.16)

From the Pauli exclusion principle, we expect the first two terms to be negative.

Repulsive interactions only enhance the negative correlations. Therefore, the positive

correlations observed near half-filling must arise from the last two terms. This is

confirmed by NLCE and QMC calculations, as shown in Fig. 6-16. Since the last two

terms describe correlations between holes and doublons and are positive, doublon-

holon must bunch together.

To understand why doublons and holes bunch, we first consider the large U/t limit.
Earlier, we described an effective antiferromagnetic interaction arising from virtual
tunneling to high energy states that contain a nearest-neighbor doublon-holon pair.
Second order perturbation theory gave an energy reduction of 4¢2/U when the neigh-
boring spins are anti-aligned. In addition to computing the energy shift, one can
examine the the perturbed wavefunction. The wavefunction must contain an admix-
ture of virtual doublon-holon states, with an amplitude of 2¢/U. This implies that
if one observes anti-ferromagnetic interactions, one should simultaneously observe
a small admixture 4¢?/U of a doublon-hole pair. In other words, nearest-neighbor

anti-ferromagnetic correlations go hand-in-hand with nearest-neighbor doublon-holon

correlations.The sign change in the moment-moment correlator <m§7i,mgﬁj>o as a
function of filling thus reflects the competition between effective repulsion due to
an interaction-enhanced Pauli hole and effective doublon-holon attraction that arise

from superexchange.

Although the non-monotonic behavior of the nearest-neighbor moment-moment
correlator was initially unexpected, in retrospect, its origins are clear. The moment-

moment correlator highlights the effect of doubles on the formation of local magnetic
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Figure 6-16: Various contributions to the nearest-neighbor moment-moment correla-
tor Cy,(1). As expected, the holon-holon correlator (h;h;) and the doublon-doublon
correlator (d;d;) are both negative, due to Pauli blocking and repulsive interactions.
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However, the doublon-holon correlator <ﬁ,02]) is positive due to super-exchange. Fig-
ure reproduced from [20].

moments. The correlator also suggests that doubles can have important physical
consequences. This can, for example, affect how charge is transported. By compar-
ing with predictions made by approximate models where doubles are projected out,

further studies could shed light on the roles of doublons in the Hubbard model.
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6.3.3 The Double Well at Half-Filling: a Toy Model

We conclude this chapter with a discussion of the double well at half-filling, i.e. the
half-filled two-site Hubbard model. This model is exactly solvable, and can elucidate
some simple concepts that carry over to larger systems. We first consider the case
where we have exactly one 1 particle and one | particle. The system is spin-balanced
and at half-filled. In order to write down a representation of the Hamiltonian, we use

the following basis:

14,0 = el Ivac)
0,14) = bl ,lvac)
1.4) = el el slvac)
1) = ol il ylvac), (6.17)

where |vac) is the vacuum state. Note that the ordering of the fermion operators is

important. In this basis, the matrix representation of the two-site Hubbard model is

then
U 0 —t t
N 0O U —t t
H= , (6.18)
—t —t 0 0
t t 0 0

which can be diagonalized. The spectrum, ordered from lowest to highest in energy,

consists of energies

1l ———
E_ = % § 6t2+U2
E, =0
EU - U
Uu 1
E. = E+§\/16t2+U2. (6.19)



The corresponding eigenvalues are

1 1
=) = cos b7 (T D=1+ sin 67 (114, 0) + 10,14))
1

) = L)
1

1 ) 1
+) = COSQE (114, 0) +10,14)) — SIHQE (40 =11), (6.20)

S

where tanf = 4t/(U 4 v/16t2 4+ U2). In the limit of U > t, E_ — —4t*/U and
E, — 4t?/U. This indicates that the ground state, which is a spin singlet, is lower
in energy by 4t?/U from the next state, as expected from super-exchange. Further-
more, one observes that in this limit, 6 ~ 2¢t/U, which implies that the ground state
wavefunction |—) has a 4t?/U? doublon-holon states |0,1]) and [1},0). This was

mentioned in the previous section as the origin of doublon-holon bunching.

One might notice that the low energy states |—) and |z) both have (S,,5.,) =
—1/4. At first sight, this might seem puzzling, as we had argued earlier that an-
tiferromagnetic spin correlations are enhanced for the ground state. A more subtle
issue concerns the SU(2) symmetry of the Hubbard Hamiltonian. By symmetry,
(SZJS;,2> = (Sx1§x2> = <5'y,15'y,2>. However, in the present case, under a global spin

rotation described by the unitary transformation

. 1 . .
ei = —=(Cri+ i)

-5

Ci = —=(=Cri+E), (6.21)

V2

the state |—) remains unchanged, while |z) — \%(H,ﬂ + 14, 4)) and (2]S.15.5|2)
becomes positive.

The resolution to these two issues is that SU(2) symmetry is broken when we
imposed the condition of having exactly one 1T and one | particle. Under global spin
rotations, 7,; is not invariant; only the total number operator n;; + 7, ; remains

invariant. To preserve SU(2), we thus relax these constraints, and only require that
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the system be at half-filling, i.e. (ny; + ny)|Y) = [¢).

The Hilbert space is now enlarged by two spin-polarized states at £ = 0, given by

1) = 4,16%2 |vac)
) = 01,101,2 [vac) , (6.22)

which do not couple to the other states at half-filling. There are now three degenerate
states at £ = E,: |z),|1,71) and ||, {). Averaged over these three degenerate states,
one finds that while (S, 1) = (S.2) =0, (S,15.2) = 1/12, giving (S, 15.2)c = 1/12.
In this enlarged space, we find that the average spin correlators (5,195, 2)c for each
energy are —1/4 + |O(t?/U?)|, 1/12, 0 and —|O(#?*/U?)| respectively. We thus find
that the lowest energy state is a nearest-neighbor singlet with (S,15.2)c < 0. The
next states in energy are split by super-exchange, and are spin triplet states with
(5:15:2)c > 0. Even higher in energy are states separated by ~ U, the Hubbard
gap. These results now respect the global SU(2) symmetry. Note that for the two-site
model, due to the smallness of the system, SU(2) symmetry is strongly violated when

the spin populations are fixed separately.

At first glance, the two-site model cannot capture the physics away from half-
filling, since the only fillings that can be accessed for the balanced system are half-
filling, the empty vacuum state, and the fully filled band insulator. The latter two
cases can be mapped onto one another by a particle-hole transformation, as discussed
in Section 2.3. To obtain qualitative predictions away from half-filling, we can inter-
polate to fillings between vacuum and half-filling by relaxing the requirement of fixed
total number, i.e. using the grand canonical ensemble. This is similar in spirit to
how SU(2) symmetry is recovered previously when one works in the grand canonical
ensemble for each spin species. Working in the grand canonical ensemble allows one
to relate the doublon-holon correlator to the strength of spin correlations away from
half-filling by using results of the two-site model. One can obtain qualitative predic-
tions for nearest-neighbor correlations that arise in a square lattice, where a single site

is shared among four nearest-neighbor pairs. For example, one finds that for nearest-
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neighbors 7, j, (ﬁzd])c = —tan?6 Oy (1) ~ —16(t*/U?)C,(1), at T = 0. Note that we
have made use of the fact that for the two-site model, spin correlations and doublon-
holon correlations are absent for the vacuum state, the band-insulating state and
states with an odd-number of particles. Analogous results can be obtained for finite
temperature by taking into account higher energy states. In fact, this approximate
calculation using two-site results is equivalent to using the smallest cluster in NLCE;,
and should qualitatively capture short-range correlations at high temperatures, as

one moves away from the atomic limit.
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Chapter 7

Summary and Outlook

In the previous chapters, I have described two areas of research that were covered
during my PhD, namely spin-orbit coupling of fermions and quantum gas microscopy
of the Fermi-Hubbard model. Here, we provide a brief summary of the results, and
an outlook on future research directions for the fermionic quantum gas microscope.

In the case of spin-orbit coupling, we have described several motivations, including
the prospect of topologically protected quantum computation in the case of p-wave
superfluids, which may arise in spin-orbit couped s-wave superfluids. We showed how
a specific experimental scheme using internal hyperfine states and Raman lasers can
realize spin-orbit coupling in 1D with a transverse Zeeman field, which is relevant
for creating Majorana zero modes in 1D wires. We presented a technique, similar to
ARPES, that allows for the direct measurement of spinful dispersions and the direct
observation of the spin-orbit gap.

Although separately, spin-orbit coupling and s-wave superfluidity have been real-
ized with fermionic °Li atoms, combining the two is problematic for 5Li. ®Li suffers
from a relatively high amount of heating due to spontaneous emission. Nevertheless,
in Section 3.4, we suggested some possible ways to extend the lifetime, which can po-
tentially allow one to observe interesting many-body states. Alternatively, one could
implement other spin-orbit coupling schemes, or use a different atom for which the
problem of spontaneous emission is much reduced.

The second area of research discussed in this thesis was quantum gas microscopy of
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the Fermi-Hubbard model. The prospect of better understanding the Hubbard model,
a prototypical strongly correlated model, has spurred intense experimental interest.
Within the past two years, six fermion microscopes have been realized worldwide,
both for SLi and “°K. In addition to our group [22, 21], several other groups have also
demonstrated successful high-fidelity imaging [51, 106, 98, 33], and have realized low-
entropy samples in the Hubbard regime [98, 45, 17]. The arrival of fermionic quantum
gas microscopes has already led to new results on magnetic and charge correlations
in both 1D and 2D [107, 20, 15, 17, 58]. With the possibility of manipulating optical
potentials through the microscope, and the ability of detecting small systems as small
as a single site, samples where the magnetic correlation length approaches the system

size have been realized [87].

We have recently added the ability to project arbitrary optical potentials through
the microscope. Similar to the case of bosonic microscopes, this will open up the
possibility to perform many new types of experiments, ranging from quantum walks
to thermalization studies in isolated systems [112, 70]. The ability to create localized
perturbations could allow one to measure response functions in the space and time do-
main, complementary to the usual frequency-momentum responses [76]. With precise
control over optical potentials, one could also prepare identical copies of many-body
states, which can enable the measurement of quantities such as the entanglement en-
tropy of a system [110], an idea which has been demonstrated in bosonic microscopes
(64, 70].

Another exciting possibility offered by custom optical potentials is the preparation
of low entropy samples [59, 11]. For example, by tailoring the optical potential to
create large metallic regions while retaining a small region near n = 1, one can
obtain small lightly-doped samples at much lower temperatures, as has been recently
demonstrated with °Li [87]. This type of entropy rearrangement is similar in spirit
to nuclear demagnetization cooling. Here, entropy is moved to regions of low density,

where charge degrees of freedom are available.

One key feature of ultracold experiments is that the systems are clean and iso-

lated, allowing coherent dynamics to persist. This is especially advantageous for non-
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equilibrium experiments such as quantum quenches, where some parameter of the
Hamiltonian is suddenly modified. Combined with the ability to control the spatial
distribution of the initial state, one can explore, in a well-controlled manner, issues
such as the fate of a single hole in a Mott insulator. More generally, one could mea-
sure transport properties of the Fermi-Hubbard model [113] by applying a gradient
either optically or magnetically. This could potentially reveal the atypical transport
phenomena observed in the cuprates [83]. For example, one might be able to observe
anomalous resistivity, atypical scaling of the AC conductivity at high frequencies
[122], or a sign change of the thermopower as the system is doped [104]. This would
allow one to directly connect microscopic correlations obtained via site-resolved mea-
surements, with macroscopic responses, even far out of the linear response regime.
For example, if a striped phase, observed in some cuprates, were to emerge upon

doping, one could explore consequences on either spin or charge transport [101].

Current experiments have only explored a small portion of parameter space in the
Hubbard model, with most experiments focused on the repulsive and spin-balanced
cases. Beyond this regime, one can for example study how spin imbalance affects the
system, as explored recently [17]. In the context of real systems, this corresponds to
a purely Zeeman field without a Lorentz force. With the use of a Feshbach resonance,
one can also change the sign of the interaction and explore the attractive Hubbard
model. Although there is a direct one-to-one mapping with the repulsive model,
certain observables could be detected more easily on the attractive side. Another
interesting avenue lies in the exploration of higher spin systems. In “°K, one can
prepare a stable 3-component mixture in the bulk, even without a lattice. This can
allow one to simulate a spin-1 Hubbard model on a square lattice, which could have
novel magnetic phases not found in spin-1/2 systems [118]. In *°K, away from any
Feshbach resonances, the interactions between different spin states are approximately
equal, allowing the possibility of creating SU(N) systems. In a lattice, systems with
N > 3 can have enhanced stability, since 3-body processes are highly suppressed due
to the Hubbard gap and the band gap. In SU(N) systems, many novel phases are

predicted to emerge even on a square lattice. For example, staggered flux phases
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[60] and topological spin liquids [56, 55] with fractional quasi-particles have been
predicted. This could be another avenue towards realizing topological phases. Rather
than using engineered dispersion relations or breaking time-reversal symmetry in
order to realize topologically non-trivial states, topological phases naturally “emerge”
out of strong correlations. Fractional particles that look nothing like the underlying
bare particles could also emerge in these phases. Both the appearance of toplogical
phases and fractional particles in strongly correlated systems highlight the notion of
emergence, a notion that lies at the heart of many-body physics.

In conclusion, the unprecendented level of control offered by quantum gas mi-
croscopes promises the possibility for many new types of experiments on dynamics
and correlations in Hubbard-type fermionic systems. Such systems could ultimately
reveal new emergent phenomena and provide new perspectives on strongly correlated

materials.
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Appendix A

Coils and Magnetic Fields for 'K

Quantum Gas Microscope

This appendix contains information on how various magnetic fields are generated in
the quantum gas microscope apparatus.

In addition to coils for the slower, slower compensation and 2D MOT, which are
not described here, there are six coils that are relevant for this thesis. Three of these
are used to generate low magnetic fields along the three directions z, y and 2. All three
are used for fine positioning of the quadrupole magnetic trap, and can be used to zero
ambient magnetic fields. The coils along ¢ are powered by a DELTA ELECTRONIKA
SM 18-50 power supply in current control mode. The coils along Z are powered by an
AGILENT E3614A power supply. The coils along & are used during optical pumping
after MOT loading, during Raman imaging, and also during evaporation near the
substrate. In order to rapidly switch on a field along & for optical pumping, the coils
along z are powered by a SORENSEN DLM 20-30 power supply except during MOT
loading, where they are powered by an AGILENT E3614A power supply. The coils
are switched between these two sources using MOSFETSs.

The other three coils, namely the Feshbach coils, the MOT coils and the curvature
coils, were described in Chapter 4. Four power supplies are shared among these
three coils. Table A.1 lists the various power supplies used, which coils they can be

connected to, and their functions.
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Function Power Supply Coil Configuration
Na MOT FB MOT Anti-Helmholtz
23Na Catch Magcatch MOT Anti-Helmholtz
WK MOT Magcatch MOT Anti-Helmholtz
40K Catch Magcatch MOT Anti-Helmholtz
Plugged Trap FB FB Helmholtz
Curvature Curvature Anti-Helmholtz
Feshbach Field FB FB Helmholtz
“Slicing” Slicer Curvature Anti-Helmholtz

Table A.1: List of power supplies and coils, their functions, and their configura-
tions. The power supplies labeled FB, Magcatch, Curvature, and Slicer are DELTA
ELEKTRONIKA SM 30-200 P167, DELTA ELEKTRONIKA SM66-AR-110, LAMBDA
ESS-30-500 and DELTA ELEKTRONIKA SM 18-220 power supplies respectively. As
described in Section 5.4.1 and Section 6.1.1, the current of the FB power supply is
measured with a DANFYSIK LEM IT 200-S current transducer and stabilized. The
current of the Slicer power supply is also stabilized with DANFYSIK LEM IT 200-S.
The current of the Curvature supply is stabilized with a DANISENSE DS600IDSA
current transducer. The Magcatch power supply is not actively stabilized. Other than
the Slicer, which is switched using MOSFETS, the other connections are switched us-
ing IGBTs.

In addition to the listed coils, there are 8 other coils originally designed as clover-
leaf coils for a loffe-Pritchard trap. These are not relevant for this thesis.
For convenience, the gradients and field calibrations for the curvature and Fesh-

bach coils, obtained from a magnetic coil simulation, are included in Table A.2.
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Quantity z Location (mm) Value

FB field 0.5 2.196 G/A

FB field 7.5 2.184G/A

FB gradient along 2 9.5 —0.0668 G/cm - A
FB gradient along 2 7.5 —0.0511 G/cm - A
Curvature gradient along 2 9.5 0.9344G/cm - A
Curvature gradient along 2 7.5 0.9186 G/cm - A

Table A.2: Magnetic field and gradient calibrations for Feshbach and Curvature coils,
obtained form a simulation. The z values of 9.5 and 7.5 correspond roughly to the
locations of the atoms at the surface of the substrate, and in the quadrupole magnetic
trap respectively.
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Appendix B

Laser Systems for *YK Quantum

Gas Microscope

This appendix contains the laser systems used in the quantum gas microscope appa-
ratus.

There are a total of 20 fibers that carry light from the K and ?*Na laser systems
to the experiment. These are given in Table B.1. There are a total of 7 fibers that
carry 1064 nm light to the experiment for trapping and transport. There is 1 fiber
that carries incoherent 830 nm light to the experiment for the “dimple” trap. This
setup is simple and has been described in Chapter 4. In this appendix, we focus on
the first two cases.

The following are details of how the various beams are related to the different
fibers and light sources. This complements the description of some of the beams in
Chapter 4. The 2*Na and K MOT light are combined with dichroic mirrors on the
experiment. The side MOT beams are in the z-y plane. The ?*Na MOT (side) beams
are split with a 1 x 4 fiber coupler and takes one fiber input. The “°K MOT (side)
beams come from a 4 x 4 fiber coupler that takes up to four fiber inputs. Only two
inputs are used, one for cooling light, and one for repumping light. The K 2D MOT
repumping and cooling light are sent to the experiment in two separate fibers. They
are combined on the experiment. The 2D MOT push beam is sent via one fiber.

Both repumping and cooling light are combined before the fiber input for the push
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beam. The optical pumping beams for ?*Na and “°K are combined with beamsplitters
and dichroic mirrors on the experiment. They are sent to the experiment with 3
separate fibers, and are sent into the vacuum chamber along . The three fibers carry
F-pumping light for Na, mg-pumping light for Na, and mpg-pumping light for K.
F-pumping for K is carried out using the MOT repumping beams.

For imaging, the y-imaging beam originates from one fiber, and carries both **Na
and “°K D2 imaging light. This can be used to image K and Na at low magnetic
fields. The x bouncing imaging, y bouncing imaging, and 2z imaging fibers carry **Na
light, and K D2 imaging light from a separate source. The separate source allows

imaging of °K at arbitrary magnetic fields.

For the 1064 nm trapping and transport beams, the light ultimately originates
from a MEPHISTO laser that is amplified via three NUFERN 50W fiber amplifiers.
The z, y movable ODT beams and y-lattice beam originate from one Nufern; the
z-lattice, accordion beam and 5-degree beam originate from a second Nufern; the

x-lattice light is generated by a third Nufern.

In the subsequent sections, we include schematics of how the different sources of

light are derived.

B.1 %K Laser System

This section contains the schematics for the laser system used to cool and image “°K.
The transitions are near the D2 line of “°K. The source of the light is an ECDL locked
to the D2 line of 3K, as shown in Fig. B-2. Some of the light is split off as a frequency
reference for a separate D2 imaging system, shown in Fig. B-3. The rest is amplified
with a tapered amplifier and sent via a fiber to the main laser table, as shown in

Fig. B-1.
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Fiber Function Direction

*3Na MOT (side) MOT light; split via a 1 x 4 fiber splitter +7/, +9

*’Na MOT (bottom) Retro-reflected vertical MOT light z

23Na, Slower Slowing light Slower

Axis

23Na Dark Spot F =1 repumping light "

WK MOT (side) MOT cooling light; combined and split via a | £2/, +7/
4 x 4 fiber splitter

0K MOT Repump (side) MOT repumper light; combined and split via | +2/, £¢’
4 x 4 fiber splitter

WK MOT (bottom) Retro-reflected vertical MOT light z

0K 2D MOT 2D MOT cooling light +3/, £2

40K 2D MOT Repump 2D MOT repumping light +3' 42

40K 2D MOT Push 2D MOT push light —a”

2Na F = 1 Optical Pumping | F-pumping for 2Na, x

2Na I = 2 Optical Pumping | mp-pumping for >Na z

10K Optical Pumping mp-pumping for 0K z

y-imaging Na and K imaging along ¢ U

z-imaging Na and K imaging along 2 3

x bouncing imaging 23Na and “°K bouncing imaging along & Z

y bouncing imaging 23Na and K bouncing imaging along § ]

r-Raman Raman light along —2 —T

y-Raman Raman light —y —1

D1 optical pumping Raman imaging D1 pumping light along —2 -z

Table B.1: List of fibers that bring *Na and/or “°K light to the experiment, their

functions, and the directions of the corresponding beams that enter the chamber.
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Figure B-1: Main laser table for *°K D2 Light. The y-imaging light is combined with
23Na D2 imaging light form the F' = 2 (B) output with a dichroic mirror, before being
sent to the experiment with a single fiber. Frequencies are in MHz.
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Figure B-2: Sub-system for “°K master laser. The master laser is locked to the cross-
over feature of the D2 line of 3K via modulation transfer spectroscopy. Frequencies
are in MHz.
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Figure B-3: Sub-system for D2 imaging laser. The D2 imaging laser is offset-locked
to the D2 master laser. Frequencies are in MHz. The multiplexer combines “°K D2
imaging light with 2*Na imaging light, and has outputs to the bouncing imaging and
vertical imaging paths.
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B.2 2Na Laser System

This section contains the laser table layout for light used to image and cool K. The
light source is a MPB COMMUNICATIONS FIBER AMPLIFIER that amplifies light
from a 1178 nm seed laser (TopTicA DL-PRO). It produces 1.3 W of frequency-
doubled 589 nm light. The main laser table and the locking sub-system is shown in

Fig. B-4 and Fig. B-5 respectively.

£ D\ "D\'I\/

From SHC +100 \ +402 "
Pickoff - Eg 1750.4
, +72 +450 o
; EE +199 . N— D>
T N To Slowel
] ] \\
+400
+85
Y@ £ - ToF=1
- o =
B 2% g
To Dark Spo
\~—ff] TomoT To Locking +80
+80 +199+6 —199+6

ToF=2(A)
oo & S

Figure B-4: Main laser table for 2Na D2 light. Frequencies are in MHz. The F = 2
(A) is sent to the optical pumping axis along z, while the F' = 2 (B) is sent to both
the y imaging axis, and a free-space multiplexer that combines with %K D2 imaging
light. The outputs of the multiplexer are sent to the x and y bouncing imaging paths,
and also to the vertical imaging path along Z. A single fiber brings the y-imaging
light to the experiment.

B.3 Raman Imaging Laser System

This section contains the schematics for the laser system for light used to Raman

image “°K. Raman imaging requires two sources of light, one for optical pumping,
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Figure B-5: Locking sub-system for 2Na. The master laser is locked to the F' = 2 —
F’ = 3 feature of the D2 line of **Na via modulation transfer spectroscopy.

and one for Raman transfer. The optical pumping light is derived from two ECDLs
(TopTica DL-PRO) offest-locked to a DBR laser (PHOTODIGM PH770DBR), as
shown in Fig. B-6. The DBR laser serves as a frequency reference, and is locked to the
cross-over feature of the 3°K D1 line, as shown in Fig. B-7. For the Raman light, we
use a M SQUARED SOLSTIS Ti-Saph laser pumped by a LIGHTHOUSE PHOTONICS
SPROUT DPSS 532nm laser. The light is detuned ~ 50 GHz to the red of the D2
line. The two Raman frequencies are generated with AOMs, as shown in Fig. B-8.
Conversion of photodiode beat frequencies to transition frequencies on K D1 line

are shown in Table B.2.
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Figure B-6: Laser system for D1 light for “°K. The two ECDLs are offset-locked to
the D1 master laser. The final beamsplitter and waveplate before the fiber can be
used to inject light from the Ti-Saph laser that provides the Raman light. This can
be used for alignment of the optical pumping path. Frequencies are in MHz.
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Figure B-7: Sub-system for D1 master laser. The master laser is a DBR laser locked to
the highest frequency cross-over feature of the D1 line of 3K via modulation transfer
spectroscopy. Frequencies are in MHz.

Light Frequency rel- | Zeeman | AOM DBR lock || Beat Fre-
ative to 39K | shift at || shift point relative | quency
D1 line center | 4.2G to 3°K D1 line
center
F-pump -657.7 -6.1 +80 +78.5 -822.3
(|7/2,-7/2) —
9/2,-9/2))
mp-pump +783.4 +7.4 +80 +78.5 +632.3
(19/2,-9/2) —
7/2,-7/2))

Table B.2: D1 Locking Frequencies. Frequencies are in MHz. This does not take into
account, the Stark shift from the lattices, which shifts all transitions by ~ 60 MHz to
the blue at the imaging depth.

To Raman: z NPBS
£377.4612
-

+82.035+-0 To D1 Table
! O | \
N —188.730¢
.
\~] 1>V
From Ti-Sapt To Raman

Figure B-8: Laser system for Raman light for “°K. The light is detuned ~ 50 GHz to
the red of the *°K D2 line. J denotes the detuning from the carrier transition at the
Raman imaging magnetic field of 4.2 G. Frequencies are in MHz.
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B.4 1064 nm Laser System

The 1064 nm beams include the z, y, and z lattices, the 5-degree beam, the movable
2-y ODTs and the accordion beam. Theses beams originate from three 50W NUFERN
fiber amplifiers seeded by a single COHERENT MEPHISTO laser. The details of how

these various beams are obtained from the three amplifiers are illustrated in Fig. B-9.
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Figure B-9: 1064 nm laser system schematics.
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Appendix C

1K Feshbach Resonances

This appendix contains a list of Feshbach resonances computed using multi-channel
quantum defect theory (MQDT) [19, 123]. In Table C.2, resonances from 20 G to
550G in the [ = 0 (s-wave) and | = 1 (p-wave) channels are listed, for Mp < 0.
For [ = 0, resonances in the lowest channel are computed for all Mr < 0. For
Mp = 0, where many experimental measurements are available for the higher energy
channels, the second and third lowest channels for [ = 0 are computed. For [ = 1, the
lowest channel is computed for odd Mp and the lowest two channels are computed
for even Mg, for Mrp < —5. Dipolar coupling terms are not included. Some of the
resonances have been observed, most have not. The two predicted resonances that
we have observed for the first time are an s-wave resonance between |9/2, —7/2) and
19/2,—-5/2) at ~ 230 G and a p-wave resonance for the same states at ~ 218 G. We
also provide an improved preliminary measurement of the s-wave resonance between
19/2,—7/2) and |9/2,—5/2) near ~ 174G [120]. Our improved measurement gives
center of 174.3(1) G and width of 7.7(5) G. We defer a discussion of the measurement
to future dissertations.

To determine whether a spin mixture experiences any p-wave resonances that

could overlap with a specific s-wave resonance, one can follow the steps listed below.

e 1) Determine Mp. For example, the mixture |9/2, —7/2) and |9/2,—5/2) has
Mp = —6. The mixture |9/2,—-9/2) and |9/2,—5/2) has Mp = —7.
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2a) If M is odd, relevant [ = 1 resonances are the second lowest channel [ = 1
resonances for Mp, and the lowest channel resonances for My — 2 and Mg + 2.
For example, for the |9/2,—9/2)-|9/2, —5/2) mixture, one needs to consider
the lowest channel [ = 1 resonances for Mp = —7, Mp = —9 and Mp = —5.
The relevant resonances are at 219.4 G for [9/2,—9/2) and |9/2, —5/2), and at
234.6 G and 246.4G for |9/2,—5/2) (Mp = —5). There are no resonances for
Mp = -9.

2b) If M is even, relevant [ = 1 resonances are the first lowest [ = 1 channels for
Mp, Mp—1 and Mp+1. For example, for the |9/2, —7/2)-19/2, —5/2) mixture,
one needs to consider the lowest channel [ = 1 resonances for My = —6 and
Mp = —7 and Mr = —5. The relevant resonances are at 218.2 G for |9/2, —7/2)
and |9/2,—5/2), at 199.8 G for |9/2,—7/2) (Mp = —7), and two resonances at
234.6 G and 246.4G for [9/2,—5/2) (Mp = —5).

Mp | States [ | Positon Width Position (Exp.) | Width
(mp1, mpa) (Theory) | (Theory) (Exp.)
-8 | (-9/2,-7/2) |0 |202.9 7.1 202.1 [120] 7.0(2) [120]
-7 1 (-9/2,-5/2) |0 |225.8 74 224.2 [120] 9.7(6) [120]
(-7/2,-7/2) |1 |199.763 5x107° | ~198.8 [120] |-
(-9/2,-5/2) |1 |219.352 | 216 215(5) [126] | -
-6 | (-7/2,-5/2) |0 |175.0 9.3 ~ 174 [120] ~ 7 [120]
0 |229.6 8.6 Observed -
0 | 448.7 0.9 - -
(-7/2,-5/2) |1 |218.2149 | 2.5x 1073 | Observed -
(-9/2,-3/2) |1 |240.09 39.3 - -
-5 1 (-7/2,-3/2) |0 |169.6 1.0 168.5(0.4) [126] | -
0 |261.4 12.4 260.3(0.6) [126] | -
0 |367.3 1.0 - -

(-5/2,-5/2) |1 |234.613 |6.1x1073 |- -
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1 |246.403 | 5.8 x 1073 | 245.3(0.5) [126]
(-7/2,-3/2) |1 |159.094 |10 ]
1 | 2481356 |3.1x1073 |-
-4 | (-5/2,-3/2) |0 |178.9 11.1 _
0 |256.0 17.4 _
0 |372.6 0.2 _
0 |451.4 1.4 _
(-5/2,-3/2) |1 |263.669 |4.3x1072]-
-3 1 (-5/2,-1/2) |0 | 26.6 0.06 ;
0 |424 0.3 _
0 |117.0 0.02 _
0 |184.0 0.07 ]
0 |313.6 20.8 _
0 |413.0 1.0 _
(-3/2,-3/2) |1 | 288.747 0.012 _
1 | 312.9487 | 0.011 _
2 | (-3/2,-1/2) |0 |38.25 0.32 ;
0 |138.57 0.15 _
0 |220.25 1.6 _
0 |293.5 35.4 _
0 |449.3 0.8 _
0 |491.36 0.2 _
(-3/2,-1/2) |1 [339.644 |6.1x1073 |-
1 |399.2423 [3.1x1074]-
1| (-3/2,+1/2) | 0 | 48.35 0.38 ;
0 |115.51 1.45 _
0 |147.40 0.04 _
0 |204.7 1.3 _
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0 |404.1 19.5 - .
0 | 506.06 1.1 : ;

(-1/2,-1/2) |1 |374.829 |0.018 373(2) [78] 2 [78]
1 [420.047 | 1.8x1073 |- _
1 [530.326 |26x1077 |- _

0 | (-1/2,41/2) |0 |31.1 0.25 31(4) [78] 5 [78]
0 |536 0.4 53(4) [78] 5 [78]
0 |875 0.4 88(4) [78] 5 [78]
0 |145.45 0.02 - ;
0 |2473 1.8 146(0.8) [78] | 4 [78]
0 |390.4 37.1 389.5(0.1) [78] | 5.5 [78]
(-1/2,-1/2) |1 | 762256 | 2.6x1073 |- -

1 |465.310 6x 1073 |- -

1 | 554.045 9x107° |- -

Table C.1: List of Feshbach resonances of “°K. Magnetic fields are in Gauss. [ = 0
resonances in the lowest channel are computed for Mr < 0. For [ = 1, the lowest

channel is computed for odd Mg and the lowest two channels are computed for even
MF, for MF S —5.

Myp | States [ | Positon Width Position (Exp.) | Width
(mp1, Mp2) (Theory) | (Theory) (Exp.)
0 | (-3/2,43/2) |0 |31.6427 |0.169 31(4) [78] 6 [78]
0 |55.7361 | 0.0957 | 53(4) [78] 4 [78]
0 | 943052 | 1.90 95(4) [78] 23 [78]

0 199.0565 0.004 - -

0 |121.227 0.121 - -
0 |181.818 | 2.841 182(4) [78] 12 [78]

0 | 512.78 22.5 - -

0 |630.717 1.78 - -
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0 |766.234 | 0.002 - :
(-5/2, +5/2) | 0 | 32.6 0.6 31(4) [78] 6 [78]
0 |62 2 61(4) [78] 21[78]

0 |945 2 - -

0 |112.162 | 0.02 - .

0 |157.2 1 : ;

0 | 647 8 - -

0 | 786.1 0.5 - -

Table C.2: Higher channel [ = 0 Feshbach resonances for Mp = 0. Shown are the
Feshbach resonances between 20 G and 800 G for the second and third lowest channels

for Mp = 0. Magnetic fields are in Gauss.

A plot showing the lowest channel [ = 0,1 resonances and the second lowest
[ = 1 resonances for Mp < —5 is shown in Fig. C-1.
wave resonances, it is clear that the ~ 174 G s-wave resonance for the |9/2, —7/2)-

|9/2, —5/2) mixture is the only s-wave resonance that is unaffected by nearby p-wave

resonances on the repulsive side.
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Figure C-1: Some Feshbach resonances of °K. The positions and widths of Feshbach
resonances for Mp < 0. The lowest channel [ = 0, 1 resonances are shown in blue and
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Appendix D

Evolution of Fermion Pairing from

Three to Two Dimensions

This appendix contains a reprint of the following paper [131]:

A. T. Sommer, L. W. Cheuk, M. J. H. Ku, W. S. Bakr, and M. W. Zwierlein,,
“Evolution of Fermion Pairing from Three to Two Dimensions,” Phys. Rev. Lett.

108, 045302 (2012).
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Evolution of Fermion Pairing from Three to Two Dimensions

Ariel T. Sommer, Lawrence W. Cheuk, Mark J. H. Ku, Waseem S. Bakr, and Martin W. Zwierlein

Department of Physics, MIT-Harvard Center for Ultracold Atoms, and Research Laboratory of Electronics, MIT,
Cambridge, Massachusetts 02139, USA
(Received 13 October 2011; published 23 January 2012)

We follow the evolution of fermion pairing in the dimensional crossover from three-dimensional to two-
dimensional as a strongly interacting Fermi gas of °®Li atoms becomes confined to a stack of two-
dimensional layers formed by a one-dimensional optical lattice. Decreasing the dimensionality leads to
the opening of a gap in radio-frequency spectra, even on the Bardeen-Cooper-Schrieffer side of a
Feshbach resonance. The measured binding energy of fermion pairs closely follows the theoretical
two-body binding energy and, in the two-dimensional limit, the zero-temperature mean-field Bose-
Einstein-condensation to Bardeen-Cooper-Schrieffer crossover theory.
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Interacting fermions in coupled two-dimensional (2D)
layers present unique physical phenomena and are central
to the description of unconventional superconductivity in
high-transition-temperature cuprates [1] and layered or-
ganic conductors [2]. Experiments on ultracold gases of
fermionic atoms have allowed access to the crossover from
Bose-Einstein condensation (BEC) of tightly bound fer-
mion pairs to Bardeen-Cooper-Schrieffer (BCS) superflu-
idity of long-range Cooper pairs in three spatial
dimensions [3,4] and, more recently, the confinement of
interacting Fermi gases to two spatial dimensions [5-9]. A
fermionic superfluid loaded into a periodic potential should
form stacks of two-dimensional superfluids with tunable
interlayer coupling [10-13], an ideal model for Josephson-
coupled quasi-2D superconductors [1,14]. For deep poten-
tials in the regime of uncoupled 2D layers, increasing the
temperature of the gas is expected to destroy superfluidity
through the Berezinskii-Kosterlitz-Thouless mechanism
[15-17], while more exotic multiplane vortex loop excita-
tions are predicted for a three-dimensional (3D) aniso-
tropic BCS superfluid near the critical point [18].

In this Letter, we study fermion pairing across the cross-
over from 3D to 2D in a periodic potential of increasing
depth. To form a bound state in 3D, the attraction between
two particles in a vacuum must exceed a certain threshold.
However, if the two particles interact in the presence of a
Fermi sea, the Cooper mechanism allows pairing for arbi-
trarily weak interactions [19]. In 2D, even two particles in a
vacuum can bind for arbitrarily weak interactions.
Surprisingly, the mean-field theory of the BEC-BCS cross-
over in 2D predicts that the binding energy of fermion pairs
in the many-body system is identical to the two-body
binding energy E; [20]. Indeed, to break a pair and remove
one pairing partner from the system costs an energy [21]

Eymp = Vu? + A? — p within mean-field theory, where
w1 is the chemical potential and A is the pairing gap. In 2D,
one finds [20] u = Ef — E,/2 and A? = 2EE,, where
Ep is the Fermi energy, and thus E, g = Ep; i.e., the
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many-body and two-body binding energies are predicted
to be identical throughout the BEC-BCS crossover.

We realize a system that is tunable from 3D to 2D with a
gas of ultracold fermionic °Li atoms trapped in an optical
trap and a standing-wave optical lattice. The lattice pro-
duces a periodic potential along the z direction,

V(z) = Vysin?(mz/d), o))

with depth V,, and lattice spacing d = 532 nm. Together
with the optical trap, the lattice interpolates between the
3D and 2D limits. It gradually freezes out motion along one
dimension and confines particles in increasingly uncoupled
layers. Features characteristic of the 2D system appear as
the strength of the periodic potential is increased. The
threshold for pairing is reduced, allowing pairs to form
for weaker attractive interactions than in the 3D system.
The effective mass of particles increases along the confined
direction, and the center of mass and relative degrees of
freedom of an atom pair become coupled [11]. For a deep
potential that suppresses interlayer tunneling, the system
is an array of uncoupled two-dimensional layers. Here,
the center of mass and relative motion decouple and fer-
mion pairs form for the weakest interatomic attraction
[11,22,23].

In the experiment, the appearance of bound fermion
pairs is revealed using radio-frequency (rf) spectroscopy.
The atomic gas consists of an equal mixture of °Li atoms in
the first and third hyperfine states (denoted as |1) and |3)),
chosen to minimize final-state interaction effects in the rf
spectra [24]. Interactions between atoms in states |1) and
|3) are greatly enhanced by a broad Feshbach resonance at
690.4(5) G [25]. An rf pulse is applied to transfer atoms
from one of the initial hyperfine states to the unoccupied
second hyperfine state (denoted as |2)). In previous work
on 1f spectroscopy of #“°K fermions in a deep one-
dimensional (1D) lattice [8], an rf pulse transferred atoms
from an initially weakly interacting state into a strongly
interacting spin state, likely producing polarons [26]. In
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our Letter, the initial state is the strongly interacting,
largely paired Fermi gas in equilibrium, and the final state
is weakly interacting.

An asymmetric dissociation peak (the bound-to-free
transition) in the rf spectrum indicates the presence of
fermion pairs. For two-particle binding, the pair dissocia-
tion line shape in the 3D and 2D limits is proportional to
p(hv — E,)/v?, with p the free-particle density of states
and v = = (v — vye) the offset of the rf frequency vy
from the hyperfine splitting »,¢ (plus symbol: [1) — [2)
transition; minus symbol: |3) — |2) transition). This form
can be obtained from Fermi’s golden rule and the bound-
state wave function in momentum space; see also
Refs. [21,27]. In 2D, the expected dissociation line shape
is then proportional to

0(hv — E
1(v) u%_ (2)

In addition to the pairing peak, at finite temperature one
expects a peak in the rf spectrum due to unbound atoms
(the free-to-free transition). A narrow bound-to-bound
transition can also be driven at an offset frequency v, =
(E, — E})/h that transfers one spin state of the initial
bound pair with binding energy E, into a bound state of
|2) with [1) or |3), of binding energy E). For a [1) — |3)
mixture near the Feshbach resonance, E;, < E} [24], so
the bound-to-bound peak is well-separated from the
bound-to-free and free-to-free peaks. As very recently
calculated [28], final-state interactions and the anomalous
nature of scattering in 2D introduce an additional factor of

In(E, /E}) . . .
Wl E) /BT 7 into Eq. (2), causing a rounding off of the

sharp peak expected from the step function.

In a 1D lattice, the binding energy for two-body pairs is
determined by the lattice spacing d, the depth V), and the
3D scattering length a. In the 2D limit V > Ep, with
recoil energy Ep = ;;:jz the scattering properties of the
gas are completely determined by E;, [22,23]. In that limit,
the lattice wells can be approximated as harmonic traps
with level spacing hw, = 2./VEx and harmonic oscillator

—"_In a many-particle system in 2D, the

length [, = o
ratio of the binding energy to the Fermi energy determines
the strength of interactions. The 2D scattering amplitude
f(Ep) = m for collisions with energy Ep is
parametrized by In(kpa,p), where kp = 2mEp/h and
arp = h/\/mE,. It is large when |In(kpayp)| <1
[22,23], corresponding to the strong-coupling regime
[28,29]. The BEC side of the BEC-BCS crossover corre-
sponds to negative values of In(kpa,p), while the BCS side
corresponds to positive values [20].

The experimental sequence proceeds as follows. An
ultracold gas of SLi is produced by sympathetic cooling
with 2*Na as described previously [21]. The °Li atoms are
transferred from a magnetic trap to an optical dipole trap
(wavelength 1064 nm, waist 120 xm), with axial harmonic

confinement (frequency 22.8 Hz) provided by magnetic
field curvature. With °Li polarized in state |1), the mag-
netic bias field is raised to 568 G, and an equal mixture of
hyperfine states |1) and |3) is created using a 50% rf
transfer from |1) to |2) followed by a full transfer from
|2) to |3). The field is then raised to the final value, and
evaporative cooling is applied by lowering the depth of the
optical dipole trap, resulting in a fermion pair condensate
with typically 5 X 10° atoms per spin state. The lattice is
then ramped up over 100 ms. The retro-reflected lattice
beam (wavelength 1064 nm) is at an angle of 0.5 degrees
from the optical dipole trap beam, enough to selectively
reflect only the lattice beam. The depth of the lattice is
calibrated using Kapitza-Dirac diffraction of a >*Na BEC
and a °Li, molecular BEC and by lattice modulation
spectroscopy on the °Li cloud. The magnetic field and
hyperfine splitting are calibrated using rf spectroscopy on
spin-polarized clouds. After loading the lattice, the rf pulse
is applied for a duration of typically 1 ms. Images of state
|2) and either |1) or |3) are recorded in each run of the
experiment.

To ensure loading into the first Bloch band, the Fermi
energy and temperature of the cloud are kept below the
second band. The 2D Fermi energy E2° = % , with n the
2D density per spin state, is typically 4 X 10 kHz. The
bottom of the second band is at least one recoil energy
Er = h X 29.3 kHz above the bottom of the first band in
shallow lattices and up to about 2 X 300 kHz for the deep-
est lattices. The temperature is estimated to be on the order
of the Fermi energy.

rf spectra are recorded for various lattice depths and
interaction strengths. Figure 1 shows examples of spectra
over a range of lattice depths at the 3D Feshbach resonance
and on the BCS side of the resonance at 721 G, where
fermion pairing in 3D is a purely many-body effect. At the
lowest lattice depths, the spectra show only a single peak,
shifted to positive offset frequencies due to many-body
interactions. This is similar to the case without a lattice
[24,30]; to discern a peak due to fermion pairs from a peak
due to unbound atoms would require locally resolved rf
spectroscopy of imbalanced Fermi gases [30]. However, as
the lattice depth is raised, the single peak splits into two
and a clear pairing gap emerges. The narrow peak at zero
offset is the free-to-free transition, and the asymmetric
peak at positive offset is the pair dissociation spectrum.
The pair spectrum, especially on resonance, shows a sharp
threshold and a long tail corresponding to dissociation of
fermion pairs into free atoms with nonzero kinetic energy.

Binding energies are determined from the offset fre-
quency of the pairing threshold. Although the line shape
in Eq. (2) jumps discontinuously from zero to its maximum
value, the spectra are observed to be broadened. Thisis to a
large part due to the logarithmic corrections [28] noted
above, which predict a gradual rise at the threshold
hv = E,, and a spectral peak that is slightly shifted from
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FIG. 1 (color online). Evolution of fermion pairing in the
3D-to-2D crossover in a one-dimensional optical lattice, ob-
served via rf spectroscopy. Shown is the transferred atom num-
ber versus rf offset frequency relative to the atomic hyperfine
splitting. (a) Spectra at the Feshbach resonance at 690.7(1) G
with d/a = —0.01(4). Lattice depths from top to bottom in units
of Ep: 1.84(3), 4.8(2), 6.1(2), 9.9(4), 12.2(4), 18.6(7), and 19.5
(7). (b) Spectra on the BCS side at 720.7(1) G, d/a = —1.15(2).
Lattice depths in units of Ep: 2.75(5), 4.13(7), 4.8(1), 6.0(2), 10.3
(2), and 18.1(4).

E,. We include possible additional broadening by convolv-
ing the theoretical line shape, including the logarithmic
correction, with a Gaussian function of width w,,. The
parameters E, and w,, are determined by a least-squares
fit to the measured spectrum. Typical spectra have w,, of
5 kHz, consistent with our estimates of broadening based
on collisions and three-body losses. The Fourier broad-
ening is 1 kHz. Power broadening is about 5 kHz on the
free-to-free transition and less than 1 kHz on the bound-to-
free transition due to the reduced wave function overlap.
Inclusion of the logarithmic correction is found to be
necessary in order for the fit function to reproduce the
observed behavior of the high-frequency tail. The final-
state binding energy used in the logarithmic correction for
fitting is obtained from spectra where both a bound-to-
bound and a bound-to-free peak were measured. At low
lattice depths, the 2D form for the paired spectrum should
differ from the exact shape that interpolates between the
3D and 2D limits. In the case where the shape of the
spectrum is given by the 3D limit, fitting to the 2D form
overestimates the binding energy by 8%.

Figure 2 shows the measured binding energies as func-
tion of V,)/ E, for several interaction strengths. The binding

Vo/Er

FIG. 2 (color online). Binding energy E, versus lattice depth
Vo at several values of the 3D scattering length a. E, is
normalized via the lattice frequency w,. Red circles: results
from spectra at 690.7(1) G and d/a = —0.01(4). Green
triangles:  720.7(1) G, d/a = —1.15(2). Blue squares:
800.1(1) G, d/a = —2.69(1). Curves show predictions from
Orso et al. [11]. Horizontal black dashed line: harmonic ap-
proximation result for 1/a = 0.

energies are normalized by hw, = 2,/VyER, which equals
the level spacing in the harmonic approximation to the
lattice potential. The measured binding energies grow
with increasing lattice depth and agree reasonably well
with theoretical predictions for two-body bound pairs in
a 1D lattice [11]. The binding energy at the 3D resonance
approaches a constant multiple of Aw, as the lattice
depth increases, as expected from the 2D limit [22,23].
Figure 3(a) compares the binding energies measured in
lattices deeper than 17E% to predictions in the harmonic
quasi-2D limit [22,23]. At the 3D Feshbach resonance, we
find E;, = 0.232(16)hw, for deep lattices. The error bar
refers to the standard error on the mean. This value is close
to the harmonic confinement result of 0.244hw, [23]. The
exact calculation [11] predicts a constant downward shift
of the binding energy by 0.2E} for deep lattices due to the
anharmonicity of the sinusoidal potential. For V, of about
20Ey, this gives a prediction of 0.22Aw ., also close to the
measured value.

Figure 3(b) shows the binding energy measured in
deep lattices normalized by the exact two-body result
[11] versus the many-body interaction parameter
In(kpa,p). Overall, the binding energies are close to the
two-body value, even in the strong-coupling regime for
| In(kpasp)| < 1, as predicted by zero-temperature mean-
field theory [20]. The data show a slight downward
deviation for the strongest coupling. At fixed reduced
temperature 7/Tp, the relationship should be universal. It
will thus be interesting to see in future work whether the
binding energy depends significantly on temperature.

The bound-to-bound transition is seen in Fig. 4 as a
narrow peak at negative offset frequencies. In the regime
where E;, can be found from the pair dissociation spectrum,
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FIG. 3 (color online). (a) Binding energy of fermion pairs
versus interaction strength [./a for deep lattices (V, > 17EjR).
Solid curve: theoretical prediction in the 2D harmonic limit
[22,23]. (b) Ratio of the measured binding energy to the two-
body result [11] versus In(kpa,p) for Vy > 17E,. Black dia-
monds: binding energy determined from the bound-to-bound
transition with resonant final-state interactions. Other data sym-
bols: see Fig. 2. Horizontal line: zero-temperature mean-field
theory [20].

the bound-to-bound peak position directly yields the bind-
ing energy in the final state E/. For example, the spectrum
in Fig. 4(a), taken at the 3D [1) — |3) resonance at
690.7(1) G and V,/Eg = 9.59(7), gives E},/Eg = 18.0(1)
at a final-state interaction of d/a’ = 8.41(2). Likewise, the
spectrum in Fig. 4(b) at Vy/E = 26.1(4) and a magnetic
field of 751.1(1) G, where d/a’ = 2.55(1), gives E}, /Eg =
5.3(1). An independent measurement for d/a = 2.55(2)
using the bound-to-free spectrum at 653.55 G yields
E,/Eg = 5.25(2), showing that bound-to-bound transi-
tions correctly indicate binding energies.

The BCS side of the 2D BEC-BCS crossover is reached
in Fig. 4(c) by increasing the number of atoms to increase
Er and increasing the magnetic field to reach a lower
binding energy. In Fig. 4(c), the central Fermi energy is
h X 43(6) kHz and T/Ty = 0.5(2). The magnetic field is
set to 834.4(1) G, where d/a = —3.06(1), and the final-
state interactions between |1) and |2) are resonant, with
d/a’ = —0.01(3). The lattice depth is Vy/Eg = 26.4(3).
Thus, we know that E) = 0.232(16)hw, = 2.4(2)Ey at
this lattice depth. From the bound-to-bound transition in
Fig. 4(c), we can then directly determine the binding
energy of |1) — |3) fermion pairs to be E,/Er = 0.9(2).
The theoretical prediction [11] for two-body binding gives
E,/Er = 0.82(1). The measured binding energy gives a
many-body interaction parameter of In(kpa,p) = 0.6(1),
on the BCS side but within the strongly interacting regime,
where one expects many-body effects beyond mean-field

a) H
| A mﬁ

. -500 -400 0 100 200
S
A
9]
@
c
o
€
o
©

c)

-60 -40 -20 0 20 40 60
RF offset (kHz)

FIG. 4 (color online). Spectra including the bound-to-bound
transition, a narrow peak at negative rf offset. Shown are spectra
at magnetic fields of (a) 690.7(1) G, (b) 751.1(1) G, and
(c) 834.4(1). The interaction parameters d/a are (a) —0.01(4),
(b) —1.91(1), and (c) —3.06(1). Lattice depths in units of E are
(@) 9.59(7), (b) 26.1(4), and (c) 26.4(3). The bound-to-free
transition is not visible in (c). The transfer is from |1) to |2)
in (a) and (b) and from |[3) to |2) in (c).

BEC-BCS theory [26,29]. It is therefore interesting that the
measured binding energy is close to the expected two-body
binding energy to much better than the Fermi energy, as
predicted by mean-field theory [20].

In conclusion, we have measured the binding energy of
fermion pairs along the crossover from 3D to 2D in a one-
dimensional optical lattice. Measurements were performed
at several lattice depths and scattering lengths, allowing
quantitative comparison with theoretical predictions.
Considering the fact that the gas is a strongly interacting
many-body system, the close agreement with two-body
theory is surprising, especially in the strong-coupling re-
gime. While mean-field BEC-BCS theory in 2D predicts
this behavior [20], it misses other important features of the
many-body system, most strikingly the interaction between
fermion pairs [13]. Superfluidity in a one-dimensional
lattice will be an exciting topic for future studies. Stacks
of weakly coupled, superfluid 2D layers would constitute a
basic model of the geometry found in high-temperature
superconductors.
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The coupling of the spin of electrons to their motional state lies at the heart of recently discovered
topological phases of matter. Here we create and detect spin-orbit coupling in an atomic Fermi gas, a
highly controllable form of quantum degenerate matter. We directly reveal the spin-orbit gap via
spin-injection spectroscopy, which characterizes the energy-momentum dispersion and spin composition
of the quantum states. For energies within the spin-orbit gap, the system acts as a spin diode. We also
create a spin-orbit coupled lattice and probe its spinful band structure, which features additional spin gaps
and a fully gapped spectrum. In the presence of s-wave interactions, such systems should display induced
p-wave pairing, topological superfluidity, and Majorana edge states.

DOI: 10.1103/PhysRevLett.109.095302

Spin-orbit coupling is responsible for a variety of phe-
nomena, from the fine structure of atomic spectra to the
spin Hall effect, topological edge states, and, in the
presence of interactions, the predicted phenomenon of
topological superconductivity [1,2]. In electronic systems,
spin-orbit coupling arises from the relativistic transforma-
tion of electric fields into magnetic fields in a moving
reference frame. In the reference frame of an electron
moving with wave vector Kk in an electric field, the motional
magnetic field couples to the electron spin through the
magnetic dipole interaction. In a two-dimensional semi-
conductor heterostructure, the electric field can arise from
structure or bulk inversion asymmetry [3], leading to
magnetic fields of the form B® = a(—ky, ky, 0) or B® =
B(ky, k,, 0), respectively known as the Rashba [4] and
Dresselhaus [5] contributions. Including a possible
momentum-independent Zeeman field B@ = (0, B,

Bgz)), the Hamiltonian of the electron takes the form
h2k?
C 2m

where g is the electron g factor, pp is the Bohr magneton,
and S is the electron spin.

The energy-momentum dispersion and the associated
spin texture of the Hamiltonian in Eq. (1) are shown in
Fig. 1(a) for B§Z) =0 and @ = B. In the absence of a
perpendicular Zeeman field B? the spectrum consists of
the parabolic free particle dispersions for the two spin
states that are shifted relative to each other in k space
owing to the spin-orbit interaction. For a nonzero field

— g'Z‘BS - (B® + B® + BY), (1)

BQZ), a gap opens in the spectrum. This gap, known as
the spin-orbit gap, has been recently observed in one-
dimensional quantum wires [6,7]. The two energy bands
are spinful in the sense that the spin of an atom is locked to
its momentum.
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In this work, we engineer the Hamiltonian in Eq. (1)
with equal Rashba and Dresselhaus strengths in an opti-
cally trapped, degenerate gas of fermionic lithium atoms
via Raman dressing of atomic hyperfine states [8,9].
Raman fields have previously been used to generate spin-
orbit coupling and gauge fields in pioneering work on
Bose-Einstein condensates [10-12] and, recently, spin-
orbit coupling in Fermi gases [13]. Here, we directly
measure the spinful band structure of Eq. (1), as well as
the rich band structure of a spin-orbit coupled lattice. For
this, we introduce spin-injection spectroscopy, which is
capable of completely characterizing the quantum states
of spin-orbit coupled fermions, including the energy-
momentum dispersion and the associated spin texture. By
tracing the evolution of quantum states in the Brillouin
zone, this method can be extended to directly measure
topological invariants, such as the Chern number in a
two-dimensional system [1,2,14].

Spin-orbit coupling is generated by using a pair of laser
beams that connects the second and third lowest hyperfine
levels in SLi, labeled | |) and | 1), via a two-photon Raman
transition, as shown in Figs. 1(b) and 1(c). The Raman
process imparts momentum #QX to an atom while chang-
ing its spin from | |) to | T) and momentum —#ZQ3% while
changing the spin from | 1) to | |). Defining a quasimomen-
tum g = k, + % for spin | |) and g = k, — % for spin | 1),
one obtains the Hamiltonian of the form given in Eq. (1)
[10]. In this mapping, BY = hQr/gup, where Qp is the
two-photon Rabi frequency, B§,Z> = hé/gup, where & is
h2
o 2’”8%13
to providing spin-orbit coupling, the Raman beams lead to

spontaneous photon scattering. For our experimental setup,
the spontaneous scattering rate is ~240 times smaller than
Qp, slow enough to permit accurate spin-injection spec-
troscopy (see Supplemental Material [15]).

the two-photon detuning, and ¢ = 8 . In addition

© 2012 American Physical Society
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FIG. 1 (color online). Realization of spin-orbit coupling in an
atomic Fermi gas. (a) Energy bands as a function of quasimo-
mentum ¢ for Raman coupling strength of 7Q)r = 0.25E% and
hé = OEg. Energy bands for h{Qdp = hé = OE are shown with
dashed lines. Color indicates spin composition of the states.
(b) A pair of Raman beams at *=19° relative to the j axis couples
states | |, k, = g) and | 1, k, = ¢ + Q). A bias magnetic field B
in the Z direction provides the quantization axis. (c) Energy level
diagram of states coupled by the Raman fields: /6 is the two-
photon detuning. The hyperfine interaction splits | 1) and | |) by
hw, and the relevant polarization components are 7 and o .
(d) Momentum-dependent Rabi oscillations for 7€, =
0.71(2)Eg and h6 = —0.25(1)Eg. Atoms are prepared in | |)
(red) and are subsequently projected into a superposition of
eigenstates as the Raman field is pulsed on. (e) A 7 pulse for
the resonant momentum class is applied at different 76 for
hQ g = 0.035(5)ER. (f),(g) Adiabatic loading and unloading of
atoms into the upper (lower) band with 70, = 0.53(5)Eg. The
Raman beams are turned on with § = ¥8.5Q0 ¢, which is then
swept linearly to 8 = 0 and back at a rate of |§] = 0.27(5)Q3.

We sympathetically cool °Li atoms with 2*Na in a
magnetic trap down to a temperature of 7 < 0.17, where
Tr is the Fermi temperature [16]. After removal of Na
atoms, the Li atoms are transferred into an optical dipole
trap formed by two orthogonal 1064 nm beams. To sepa-
rate the atomic hyperfine levels, we apply a magnetic field
of 11.6 G. At this field, the interactions between states | 1)
and ||) (scattering length 20a,) are negligible in the
experiment.

When the spin-orbit gap is opened suddenly, an atom
prepared in the state | |, k, = ¢ — Q/2) oscillates between
|lrkx=q_Q/2> and |T:kx=q+Q/2> with a
momentum-dependent frequency A(g)/h, where A(qg) is
the energy difference between the bands at quasimomen-
tum g. Such Rabi oscillations correspond to Larmor pre-
cession of the pseudospin in the effective magnetic field
B0 = B® + B® + B@, We have observed these os-
cillations by starting with atoms in | |), pulsing on the
Raman field for a variable duration 7, and imaging the
atoms spin-selectively after time-of-flight expansion
from the trap. Time-of-flight maps momentum to real
space, allowing direct momentum resolution of the spin

populations. As a function of pulse duration, we observe
oscillations of the spin polarization with momentum-
dependent frequencies, as shown in Fig. 1(d). Since our
Fermi gas occupies a large range of momentum states with
near-unity occupation, each image at a given pulse dura-
tion 7 contains information for a large range of momenta q.
The observation of momentum-dependent oscillations
demonstrates the presence of a spin-orbit gap and shows
that the atomic system is coherent over many cycles. To
highlight the momentum selectivity of this process, we
prepare an equal mixture of atoms in states | 1) and | |)
and pulse on the Raman fields for a time r = 7/Qy for
different two-photon detunings &. This inverts the spin for
atoms with momentum g where A(g) is minimal and equals
hQg. The resonant momentum class depends linearly on &
due to the Doppler shift o« k,Q, as shown in Fig. 1(e).
Instead of pulsing on the Raman field and projecting the
initial state into a superposition of states in the two bands,
one can introduce the spin-orbit gap adiabatically with
respect to band populations. This is achieved by starting
with a spin-polarized Fermi gas and sweeping the two-
photon detuning & from an initial value §; to a final
detuning & ;. The magnitude of the initial detuning |5,| is
much larger than the two-photon recoil energy Ep =
h2Q?%/2m, so that the effective Zeeman field is almost
entirely parallel with the spins. Depending on the direction
of the sweep, this loads atoms into either the upper or the
lower dressed band. We interrupt the sweep at various
times and image the spin-momentum distribution. This
reveals that the spin texture follows the effective Zeeman
field. We verify that the process is reversible by sweeping
the detuning back to &; and observing that full spin polar-
ization is restored, as shown in Figs. 1(f) and 1(g).
Having demonstrated the ability to engineer spin-orbit
coupling in a Fermi gas, we introduce a general approach
to measure the eigenstates and energies of fermions at each
quasimomentum ¢ and thus resolve the band structure and
the spin texture of spin-orbit coupled atomic systems. Our
approach yields similar information to spin and angle-
resolved photoemission spectroscopy (spin-ARPES), a
powerful technique recently developed in condensed mat-
ter physics [17]. Spin-ARPES is particularly useful for
studying magnetic and quantum spin Hall materials; it
has been used, for example, to directly measure topological
quantum numbers in the Bi;_,Sb, series, revealing the
presence of topological order and chiral properties [18].
Our spectroscopic technique uses radio frequency (rf)
spin injection of atoms from a free Fermi gas into an empty
spin-orbit coupled system using photons of a known en-
ergy, as shown in Fig. 2(a). After injection, the momentum
and spin of the injected atoms are analyzed by using time
of flight [19] combined with spin-resolved detection.
Atoms are initially loaded into one of two free ‘“‘reservoir”
atomic states | |)g and | 1), for which we use the first and
fourth lowest hyperfine states of °Li. State | |)z can be

095302-2



PRL 109, 095302 (2012) PHYSICAL

REVIEW LETTERS

week ending
31 AUGUST 2012

(a) T o Te

05 ; 016 ] 08
- ‘ 012 0s

\w/: z 0.0 oo | —d?,- 04
| = 0.5+ { 0.04 02

i) - | (PR SRR T !
<15 05 05 15 05 05 15
k/Q ke /Q
1.51(f) [E]] {h} 1'2
x1.0 2:6
~. 05 \ / 0.4
ool NAS Nt i/ o
0.5 > 0.0
-2 -1 0 1 22 4 0 1 2-2 - a 1 2
q/Q q/Q q/Q

FIG. 2 (color online). Spin-injection spectroscopy. (a) An rf
pulse injects atoms from the reservoir states (shown in black)
| g and | |)¢ into the spin-orbit coupled system (shown in red
and blue). Injection occurs when the rf photon energy equals the
energy difference between the reservoir state and the spin-orbit
coupled state at quasimomentum g. (b),(c) Spin-resolved | |) and
| 1) spectra, respectively, when transferring out of | 1);. Here,
hQg = 0.43(5)Eg and 18 = 0.00(3)Eg. (d),(e) Spin-resolved | |
) and | 1) spectra, respectively, when transferring out of | |) for
the same Raman strength 7Qg. (f), (g), and (h) The recon-
structed spinful dispersions for 78 = 0.00(3)E; and hQy =
0ER, hQ i = 0.43(5)ER, and hQp = 0.9(1)ER, respectively.

coupled via rf to the state | |), as this connects the first and
second lowest hyperfine states. Similarly, an atom in state
| g can be transferred to | ). rf spin injection does not
impart momentum to the atom and occurs when the fre-
quency of the rf pulse matches the energy difference
between the spin-orbit coupled bands and the initial reser-
voir state, as shown in Fig. 2(a). Spin injection from | |)
(I D) populates mostly the region of the spin-orbit coupled
bands with a strong admixture of | |) (| 1)) states. Thus, the
use of two reservoir states allows us to measure both the
| |)-rich and the | )-rich parts of the spin-orbit coupled
bands. Following the injection process, the Raman beams
are switched off, and the atoms are simultaneously released
from the trap. By counting the number of atoms of a given
spin and momentum as a function of injection energy after
time of flight, we determine the dispersion of the spin-orbit
coupled bands along with their spin texture. Note that,
while spin-ARPES and previous momentum-resolved
spectroscopic technique